
Innovative ideas for pioneering CO₂ applications
KSB looks back on 150 years of technological innovation – and uses this passion to take the necessary steps towards a sustainable future. One of the key issues we face is how to deal with CO₂. Capturing, transporting, using and storing carbon dioxide are important fields in which KSB is developing vital technologies and setting trends.
We are driving forward the development of CCUS (carbon capture, utilisation and storage)

CO₂ can be captured using a variety of methods, each with its own specific challenges. KSB offers solutions for all capture technologies (chemical and physical absorption, direct air separation, etc.) at all separation stages (pre-combustion, post-combustion and oxyfuel):
- Lean amine solution for CO₂ absorption
- Transfer of liquefied CO₂
- Desulphurisation fluids for purification
- Process water for the synthesis gas scrubber
- Process condensate for the stripper flow and coolant injection
- Demand-driven cooling, scrubber and boiler feed water supply in the overall system
After it has been captured, the CO₂ can be compressed to form a fluid that is almost as dense as water. When the CO₂ condenses below its critical point, it can be pumped and transported by pipeline, truck or ship.
Carbon storage involves the permanent storage of CO₂ in underground geological formations. With geological storage, CO₂ captured during industrial processes is injected into rock formations deep underground, permanently removing it from the atmosphere:
- in saline formations
- EOR (enhanced oil recovery)
- in depleted reservoirs
In a combustion chamber, natural gas is mixed under high pressure with oxygen and supercritical CO₂ from the capturing process and burned. The resulting very hot working fluid expands in a turbine before being cooled in a heat exchanger. The water that forms condenses and is then separated, leaving a gaseous CO2 flow. The excess CO₂ is fed into a pipeline so it can be used elsewhere or stored underground. The remaining CO₂ flow is compressed, cooled and pumped under high pressure using pumps from KSB. In the heat exchanger, the CO₂ flow is heated up again and then returned to the combustion chamber.
Once the CO2 has been captured, it can be used as a raw material to manufacture products or provide services, for example climate-neutral energies such as synthetic and biofuels, chemicals, plastics, fibres and synthetic rubber. KSB offers a wide range of pumps and valves for such purposes.
RPH
Horizontal radially split volute casing pump in back pull-out design, to API 610, ISO 13709 (heavy duty), type OH2, single-stage, with single-suction radial impeller and centreline pump feet; with inducer if required. ATEX-compliant version available.
Magnochem
Horizontal seal-less volute casing pump in back pull-out design, with magnetic drive, to DIN EN ISO 2858 / ISO 5199, with radial impeller, single-entry, single-stage. ATEX-compliant version available.
MegaCPK
Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to DIN EN ISO 5199, dimensions to DIN EN ISO 2858, complemented by nominal diameters DN25 and ≥DN200, in large range of material and seal variants; also available as a variant with "wet" shaft and conical seal chamber. ATEX-compliant version available.
Multitec
Multistage horizontal or vertical centrifugal pump in ring-section design, long-coupled or close-coupled, with axial or radial suction nozzle, cast radial impellers and motor-mounted variable speed system. ATEX-compliant version available.
HG
Horizontal radially split ring-section pump with radial impellers, single-entry or double-entry, multistage.
CHTR
Horizontal radially split multistage high-pressure pumps in between-bearings design, with double casing (barrel-type pumps) to API 610 (ISO 13709), type BB5. First stage optionally available in double-suction design for low NPSH requirements. ATEX-compliant version available.
DANAÏS 150
Double-offset butterfly valve with ISO 5211 compliant square shaft end, with plastomer seat (also in fire-safe design), metal seat or elastomer seat (FKM [VITON R] or NBR [nitrile]). Lever or manual gearbox, pneumatic, electric or hydraulic actuator. Body made of nodular cast iron, cast steel, stainless steel or duplex stainless steel (254 SMO). Wafer-type body (T1), full-lug body (T4), T4 suitable for downstream dismantling and dead-end service with counterflange. Connections to EN, ASME or JIS. Fire-safe design tested and certified to API 607. Fugitive emissions performance tested and certified to EN ISO 15848-1. ATEX-compliant version in accordance with Directive 2014/34/EU.
SISTO-16
Weir-type diaphragm valve to DIN/EN with flanged ends or threaded socket ends, in straight-way pattern; shut-off and sealing to atmosphere by supported and confined diaphragm; body with coating or lining, position indicator with integrated stem protection. All moving parts are separated from the fluid by the diaphragm. Maintenance-free.
MIL 41000
Cage-guided single-ported heavy-duty control valves, high pressure drop capability; noise reduction and anti-cavitation solution available by replacing the standard cage.