Auslegung von Kreiselpumpen
1 Formelzeichen, Einheiten und Benennungen6
2 Pumpenbauarten ...8
3 Auslegung für die Förderung von Wasser10
 3.1 Pumpendaten ...10
 3.1.1 Förderstrom Q der Pumpe ..10
 3.1.2 Förderhöhe H und Förderdruck Δp der Pumpe10
 3.1.3 Wirkungsgrad und Leistungsbedarf an der Pumpen-
 welle ..10
 3.1.4 Drehzahl ..11
 3.1.5 Spezifische Drehzahl nq und Laufradbauformen11
 3.1.6 Kennlinien der Pumpen ...13
3 Anlagedaten ..16
 3.2.1 Förderhöhe H₄ der Anlage ...16
 3.2.1.1 Bernoulli-Gleichung ..16
 3.2.1.2 Druckverluste pᵥ durch Strömungswiderstände18
 3.2.1.2.1 Druckhöhenverluste Hᵥ in geraden Rohrleitungen18
 3.2.1.2.2 Druckhöhenverluste Hᵥ in Armaturen u. Formstücken ..22
 3.2.2 Kennlinien der Anlage ..26
3 Auswahl der Pumpe ..28
 3.3.1 Hydraulische Auslegung ...28
 3.3.2 Mechanische Auslegung ...29
 3.3.3 Auswahl des Elektromotors ..29
 3.3.3.1 Bemessung der Motorleistung29
 3.3.3.2 Motoren für wellendichtungslose Pumpen31
 3.3.3.3 Anfahrverhalten ..31
3 Betriebsverhalten und Regelung ..34
 3.4.1 Betriebspunkt ..34
 3.4.2 Förderstromregelung durch Drosseln34
 3.4.3 Förderstromregelung durch Drehzahlverstellung35
 3.4.4 Parallelbetrieb von Kreiselpumpen36
 3.4.5 Serienbetrieb (Hinterreinaderschaltung)38
 3.4.6 Abdrehen von Laufrädern ..38
 3.4.7 Hinterfeilen von Laufradschaufeln39
 3.4.8 Förderstromregelung mittels Vordrall39
 3.4.9 Förderstromregelung/-änderung durch Schaufelverstellung ..39
 3.4.10 Förderstromregelung mittels Bypass40
3 Saug- und Zulaufverhältnisse ...41
 3.5.1 NPSH-Wert der Anlage NPSHᵥ₄ₚhra41
 3.5.1.1 NPSHᵥ₄ₚhra bei Saugbetrieb43
 3.5.1.2 NPSHᵥ₄ₚhra bei Zulaufbetrieb44
 3.5.2 NPSH-Wert der Pumpe NPSHᵥ₄ₚhra44
 3.5.3 Korrekturmöglichkeiten ...45
 3.6 Einfluss von Verunreinigungen47
4 Besonderheiten bei der Förderung zäher Flüssigkeiten48
 4.1 Die Fließkurve ...48
 4.2 NEWTONsche Flüssigkeiten ..50
 4.2.1 Einfluss auf die Pumpenkennlinien50
 4.2.2 Einfluss auf die Anlagekennlinien54
 4.3 NichtNEWTONsche Flüssigkeiten54
 4.3.1 Einfluss auf die Pumpenkennlinien54
 4.3.2 Einfluss auf die Anlagekennlinien55
Verzeichnis der Tabellen

<table>
<thead>
<tr>
<th>Seite</th>
<th>Tab. 1: Grundbauarten von Kreiselpumpen</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tab. 2: Bezugsdrehzahlen</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Tab. 3: Mittlere Rauhigkeitserhebungen k von Rohren in grober Abschätzung</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tab. 4: Innendurchmesser, Wandstärke und Gewichte handelsüblicher Stahlrohre</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tab. 5: Verlustbeiwerte ζ in Armaturen verschiedener Bauarten</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Tab. 6: Verlustbeiwerte ζ in Krümmern und Kniestücken</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Tab. 7: Verlustbeiwerte ζ in Formstücken</td>
<td>24/25</td>
</tr>
<tr>
<td></td>
<td>Tab. 8: Verlustbeiwerte ζ in Übergangsstücken</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Tab. 9: Schutzarten für Elektromotoren zum Schutz gegen Berührung, Fremdkörpern und Wasser</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Tab. 10: Zulässige Schaltzahlen pro Stunde für Elektromotoren</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Tab. 11: Anlassmethoden für Asynchronmotoren</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Tab. 12: Verdampfungsdruck, Dichte und kinematische Viskosität des Wassers bei Sättigungsdruck</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Tab. 13: Einfluss der topographischen Höhe auf die Jahresmittelwerte des Luftdrucks</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Tab. 14: Mindestwerte für ungestörte Rohrlängen bei Messstellen</td>
<td>71</td>
</tr>
</tbody>
</table>
1 Formelzeichen, Einheiten und Benennungen

A \(\text{m}^2 \)
- durchströmter Querschnitt

A \(\text{m} \)
- Abstand zwischen Messstelle und Pumpenflansch

a \(\text{m}, \text{mm} \)
- Kanalbreite rechteckiger Krümmer

B \(\text{m}, \text{mm} \)
- Bodenabstand des Saugrohres

c_D
- Widerstandsbeiwert der Kugel in Wasserströmung

c_T \(\% \)
- Feststoffkonzentration im Förderstrom

D \(\text{m (mm)} \)
- Außendurchmesser, größter Durchmesser

DN \(\text{(mm)} \)
- Nennweite

d \(\text{m (mm)} \)
- Innendurchmesser, kleiner Durchmesser

d_i \(\text{m (mm)} \)
- Korndurchmesser von Feststoffen

d_{50} \(\text{m (mm)} \)
- mittlerer Korndurchmesser von Feststoffen

F \(\text{N} \)
- Kraft

f
- Drosselbeiwert der Lochblende

f_{HI}
- Umrechnungsfaktor für Förderhöhe (KSB-System)

f_Q
- Umrechnungsfaktor für Förderstrom (KSB-System)

f_\eta
- Umrechnungsfaktor für Wirkungsgrad (KSB-System)

g \(\text{m/s}^2 \)
- Fallbeschleunigung = 9,81 m/s²

H \(\text{m} \)
- Förderhöhe

H_{geo} \(\text{m} \)
- geodätische Förderhöhe

H_s \(\text{m} \)
- Saughöhe

H_{geo} \(\text{m} \)
- geodätische Saughöhe

H_{z geo} \(\text{m} \)
- geodätische Zulaufhöhe

H_v \(\text{m} \)
- Verlusthöhe

H_0 \(\text{m} \)
- Nullförderhöhe (bei \(Q = 0 \))

I \(\text{A} \)
- elektrische Stromstärke

K
- type number (angelsächs. spezifische Drehzahl)

k \(\text{mm}, \mu\text{m} \)
- mittlere absolute Rauhigkeit

k \(\text{mm} \)
- Umrechnungsfaktoren \(k_Q, k_{HI}, k_\eta \)

(\text{HI-Verfahren})

k_v \(\text{m}^3/\text{h} \)
- Verlustkennzahl bei Armaturen

L \(\text{m} \)
- Rohrlänge

L_{st} \(\text{m} \)
- gestreckte Länge der luftgefüllten Leitung

M \(\text{Nm} \)
- Moment

NPSH_{erf} \(\text{m} \)
- NPSH-Wert der Pumpe (erforderlich)

NPSH_{vorh} \(\text{m} \)
- NPSH-Wert der Anlage (vorhanden)

N_s
- spezifische Drehzahl in den USA

n \(\text{min}^{-1}, \text{s}^{-1} \)
- Drehzahl

n_s \(\text{min}^{-1} \)
- spezifische Drehzahl (auch dimensionslos als bautypische Kennzahl des Laufrades)

P \(\text{kW (W)} \)
- Leistung, Leistungsbedarf

p_e \(\text{N/m}^2 \)
- Überdruck im Saug- bzw. Zulaufbehälter

PN \(\text{(bar)} \)
- Nenndruck
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>Deutscher Ausdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta p)</td>
<td>bar (Pa)</td>
<td>Förderdruck, Druckdifferenz (Pa = N/m²)</td>
</tr>
<tr>
<td>(p)</td>
<td>bar (Pa)</td>
<td>Druck (Pa = N/m² = 10⁻⁵ bar)</td>
</tr>
<tr>
<td>(p_b)</td>
<td>mbar (Pa)</td>
<td>atmosphärischer Luftdruck</td>
</tr>
<tr>
<td>(p_D)</td>
<td>bar (Pa)</td>
<td>Verdampfungsdruck der Förderflüssigkeit</td>
</tr>
<tr>
<td>(p_v)</td>
<td>bar (Pa)</td>
<td>Druckverlust</td>
</tr>
<tr>
<td>(Q)</td>
<td>m³/s, m³/h</td>
<td>Förderstrom (auch in l/s)</td>
</tr>
<tr>
<td>(Q_s)</td>
<td>m³/h</td>
<td>Förderstrom beim Ausschaltdruck</td>
</tr>
<tr>
<td>(Q_e)</td>
<td>m³/h</td>
<td>Förderstrom beim Einschaltdruck</td>
</tr>
<tr>
<td>(q_L)</td>
<td>%</td>
<td>Luft- bzw. Gasgehalt in der Förderflüssigkeit</td>
</tr>
<tr>
<td>(R)</td>
<td>m (mm)</td>
<td>Radius</td>
</tr>
<tr>
<td>(R_e)</td>
<td></td>
<td>REYNOLDS-Zahl</td>
</tr>
<tr>
<td>(S)</td>
<td>m</td>
<td>Überdeckung, Eintauchtiefe</td>
</tr>
<tr>
<td>(s)</td>
<td>mm</td>
<td>Wandstärke</td>
</tr>
<tr>
<td>(s')</td>
<td>m</td>
<td>Höhendifferenz zwischen Mitte Laufradeintritt und Mitte Pumpensaugstutzen</td>
</tr>
<tr>
<td>(T)</td>
<td>Nm</td>
<td>Drehmoment</td>
</tr>
<tr>
<td>(t)</td>
<td>°C</td>
<td>Temperatur</td>
</tr>
<tr>
<td>(U)</td>
<td>m</td>
<td>Länge der ungestörten Strömung</td>
</tr>
<tr>
<td>(U_m)</td>
<td>m</td>
<td>benutzer Umfang des durchströmten Querschnitts</td>
</tr>
<tr>
<td>(V_B)</td>
<td>m³</td>
<td>Volumen des Saugbehälters</td>
</tr>
<tr>
<td>(V_N)</td>
<td>m³</td>
<td>Nutzvolumen des Pumpensumpfes</td>
</tr>
<tr>
<td>(v)</td>
<td>m/s</td>
<td>Strömungsgeschwindigkeit</td>
</tr>
<tr>
<td>(w)</td>
<td>m/s</td>
<td>Sinkgeschwindigkeit von Feststoffen</td>
</tr>
<tr>
<td>(y)</td>
<td>mm</td>
<td>Öffnungshub des Schiebers, Wandabstand</td>
</tr>
<tr>
<td>(Z)</td>
<td>1/h</td>
<td>Schaltzahl (Schalthäufigkeit)</td>
</tr>
<tr>
<td>(z)</td>
<td></td>
<td>Stufenzahl</td>
</tr>
<tr>
<td>(z_{s,d})</td>
<td>m</td>
<td>Höhenunterschied zwischen Druck- und Saugstutzen der Pumpe</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>°</td>
<td>Umlenkungswinkel, Öffnungswinkel</td>
</tr>
<tr>
<td>(\delta)</td>
<td>°</td>
<td>Neigungswinkel</td>
</tr>
<tr>
<td>(\zeta)</td>
<td></td>
<td>Verlustbeiwert</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(%)</td>
<td>Wirkungsgrad</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Pa s</td>
<td>dynamische Viskosität</td>
</tr>
<tr>
<td>(\lambda)</td>
<td></td>
<td>Rohrreibungswert</td>
</tr>
<tr>
<td>(\nu)</td>
<td>m²/s</td>
<td>kinematische Viskosität</td>
</tr>
<tr>
<td>(\dot{q})</td>
<td>kg/m³</td>
<td>Dichte</td>
</tr>
<tr>
<td>(\tau)</td>
<td>N/m²</td>
<td>Schubspannung</td>
</tr>
<tr>
<td>(\tau_f)</td>
<td>N/m²</td>
<td>Schubspannung an der Fließgrenze</td>
</tr>
<tr>
<td>(\varphi)</td>
<td></td>
<td>Temperaturfaktor, Öffnungswinkel der Klappe, als (\cos \varphi) Leistungs faktor von Asynchronmotoren</td>
</tr>
<tr>
<td>(\psi)</td>
<td></td>
<td>Druckziffer (dimensionslose Laufadförderhöhe)</td>
</tr>
</tbody>
</table>

Indices

- A: auf die Anlage bezogen
- a: am Austrittsquerschnitt der Anlage, abzweigend
- Bl: auf die Bohrung der Lochblende bezogen
- d: druckseitig, am Druckstutzen, durchfließend
- dyn: dynamischer Anteil
- E: am engsten Querschnitt von Armaturen (Tab.5)
- e: am Eintritt des Saugrohres oder der Saugglocke bezogen
- f: auf die Trägerflüssigkeit bezogen
- H: horizontal
- K: auf die Krümmung bezogen
- m: Mittelwert
- max: Maximalwert
- min: Minimalwert
- N: Nennwert
- opt: Bestwert, im Punkt besten Wirkungsgrades
- P: auf die Pumpe bezogen
- p: auf den Druck bezogen
- r: reduziert, bei ab- oder ausgedrehtem Laufrad
- s: saugseitig, am Saugstutzen bezogen
- s: auf den Feststoff (solid) bezogen
- stat: statischer Anteil
- t: bezogen auf das Laufrad vor dem Ab-/Ausdrehen
- V: vertikal
- v: auf die Verluste bezogen
- w: auf Wasser bezogen
- z: auf die zähe Flüssigkeit bezogen
- zu: auf den Zufluss bezogen
- 0: Ausgangsposition, auf die Einzelkugel bezogen
- 1, 2, 3: Zählziffern, Positionen
- I, II: Zahl der betriebenen Pumpen
2 Pumpenbauarten

Die auffallendsten Baumerkmale der Grundbauarten sind
- die Stufenzahl (einstufig / mehrstufig),
- die Wellenlage (horizontal / vertikal),
- das Gehäuse (radial z. B. Spiralgehäuse / axial = Rohrgehäuse),
- die Zahl der Laufradströme (einströmig / zweiströmig),
- die Benetzung des Motors (trockener Motor / Tauchmotor = innen trocken / Nassläufermotor = innen nass, z. B. Spaltrohrmotor, Unterwassermotor).

Für diese Baumerkmale, die im allgemeinen das Erscheinungsbild einer Baureihe bestimmen, sind nachstehend einige Beispiele abgebildet (Tabelle 1 und Bilder 1a bis 1p).

Tabelle 1: Grundbauarten von Kreiselpumpen

<table>
<thead>
<tr>
<th>Stufenzahl</th>
<th>einstufig</th>
<th>mehrstufig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellenlage</td>
<td>horizontal</td>
<td>vertikal</td>
</tr>
<tr>
<td>Gehäusebauart</td>
<td>radial</td>
<td>axial</td>
</tr>
<tr>
<td>Zahl der Laufradströme</td>
<td>radial</td>
<td>axial</td>
</tr>
<tr>
<td>Motorbauart, Bild Nr. 1..</td>
<td>trockener (Norm)-Motor dto. mit Magnetantrieb</td>
<td>Tauchmotor (s. 3.3.2)</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>j</td>
</tr>
</tbody>
</table>

Darüber hinaus sind weitere Merkmale einer Kreiselpumpe
- die Aufstellungsart, die in Abschnitt 7.1 behandelt wird,
- die Nennweite (für die Baugröße, abhängig vom Förderstrom),
- der Nenndruck (für die Wandstärken von Gehäusen und Flanschen),
- die Temperatur (für die Kühlung von Wellendichtungen z. B.),
- das Fördermedium (abrasive, aggressive, giftige Flüssigkeiten),
- die Laufradbaue (radial / axial je nach spezifischer Drehzahl)
- die Fähigkeit zur Selbstansaugung,
- die Gehäuseteilung, die Stutzenstellung, ein Topfgehäuse usw.
Bild 1 (a bis p) :
Grundbauarten von Kreiselpumpen nach Tabelle 1

Pumpenbauarten (Beispiele)
3 Auslegung für die Förderung von Wasser

Dieser Abschnitt gilt hauptsächlich für die Förderung von Wasser; die Besonderheiten bei der Auslegung anderer Förderflüssigkeiten werden in den Abschnitten 4, 5 und 6 behandelt.

3.1 Pumpendaten

3.1.1 Förderstrom Q der Pumpe

Der Förderstrom Q ist das in der Zeiteinheit am Pumpendruckstutzen nutzbar gelieferte Volumen in m³/s (gebräuchlich sind auch l/s und m³/h). Er ändert sich proportional mit der Pumpendrehzahl. Leckwasser sowie die pumpeninternen Spaltströme zählen nicht zum Förderstrom.

3.1.2 Förderhöhe H und Förderdruck Δp der Pumpe

Die Förderhöhe H einer Pumpe ist die von ihr auf die Förderflüssigkeit übertragene, nutzbare mechanische Arbeit in Nm, bezogen auf die Gewichtskraft der geförderten Flüssigkeit in N, ausgedrückt in Nm/N = m (früher auch m Flüssigkeitsäulen genannt). Sie ist proportional dem Quadrat der Drehzahl des Laufrades und unabhängig von der Dichte ρ der Förderflüssigkeit, d.h. eine bestimmte Kreiselpumpe fördert verschiedene Flüssigkeiten (gleicher kinematischer Zähigkeit ν) unabhängig von ihrer Dichte ρ auf gleiche Förderhöhen H. Diese Aussage gilt für alle Kreiselpumpen.

Die Pumpenförderhöhe H äußert sich gemäß der Bernoulligleichung (siehe Abschnitt 3.2.1.1)

\[\Delta p = \rho \cdot g \cdot \left(H - z_{s,d} \right) \left(\frac{v_d^2 - v_s^2}{2g} \right) \]

mit

- Q Förderstrom der Pumpe am jeweiligen Stutzen in m³/s,
- d Innendurchmesser am jeweiligen Pumpenstutzen in m,
- Δp Förderdruck in N/m²

(Zur Umrechnung in bar: 1 bar = 100 000 N/m²).

Hohe Dichten erhöhen also den Förderdruck und damit den Enddruck der Pumpe. Der Enddruck ist die Summe aus Förderdruck und Zulaufdruck und ist durch die Gehäusefestigkeit begrenzt. Zu beachten ist weiterhin die Begrenzung der Gehäusefestigkeit durch Temperaturinflüsse.

3.1.3 Wirkungsgrad und Leistungsbedarf P an der Pumpenwelle

Der Leistungsbedarf P einer Pumpe ist die an der Pumpenwelle oder -kupplung aufgenommene mechanische Leistung in kW oder W; er ist proportional der dritten Potenz der Drehzahl und wird ermittelt nach einer der folgenden Formeln:

\[P = \frac{\pi Q \cdot \rho \cdot g \cdot H}{d^3} \]
Wirkungsgrad · Leistungsbedarf · Drehzahl · spez. Drehzahl

\[P = \frac{\varrho \cdot g \cdot Q \cdot H}{\eta} \text{ in } W = \frac{\varrho \cdot g \cdot Q \cdot H}{1000 \cdot \eta} \text{ in kW} = \frac{\varrho \cdot Q \cdot H}{367 \cdot \eta} \text{ in kW} \]

mit
\[\varrho \text{ Dichte in kg/m}^3 \]
\[Q \text{ Förderstrom in m}^3/s \]
\[g \text{ Fallbeschleunigung } = 9,81 \text{ m/s}^2 \]
\[H \text{ Förderhöhe in m} \]
\[\eta \text{ Wirkungsgrad zwischen } 0 \text{ und } <1 \text{ (nicht in %).} \]

Der Pumpenwirkungsgrad \(\eta \) ist in den Kennlinien (siehe Abschnitt 3.1.6) angegeben. Der Leistungsbedarf \(P \) der Pumpe kann auch genügend genau direkt aus den Pumpenkennlinien (s. Abschnitt 3.1.6) für die Dichte \(\varrho = 1000 \text{ kg/m}^3 \) entnommen werden. Bei anderer Dichte \(\varrho \) ist der abgelesene Leistungsbedarf \(P \) proportional umzurechnen.

Bei der Förderung von Flüssigkeiten mit höherer Zähigkeit als Wasser (siehe unter Abschnitt 4) oder mit höherem Feststoffanteil (siehe unter Abschnitt 6) ist ein höherer Leistungsbedarf zu erwarten (dazu gehört auch die Förderung von Abwasser, siehe unter Abschnitt 3.6).

Die Dichte \(\varrho \) geht linear in den Leistungsbedarf \(P \) der Pumpe ein. Bei sehr hohen Dichten sind deshalb die zulässigen Höchstwerte der Motorbelastung (Abschnitt 3.3.3) und des Drehmomentes (wegen der Belastung von Kupplung, Welle und Passfedern) zu beachten!

3.1.4 Drehzahl \(n \)

Bei Antrieb mit Drehstrommotoren (Asynchronmotoren mit Kurzschlussläufer nach IEC-Norm) werden folgende Drehzahlen für die Pumpe zugrunde gelegt:

<table>
<thead>
<tr>
<th>Polzahl</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequenz bei 50 Hz</td>
<td>2900</td>
<td>1450</td>
<td>960</td>
<td>725</td>
<td>580</td>
<td>480</td>
<td>415</td>
</tr>
<tr>
<td>Frequenz bei 60 Hz</td>
<td>3500</td>
<td>1750</td>
<td>1160</td>
<td>875</td>
<td>700</td>
<td>580</td>
<td>500</td>
</tr>
</tbody>
</table>

In der Praxis laufen die Drehstrommotoren jedoch (abhängig von der Leistung \(P \) und vom Hersteller) mit geringfügig höheren Drehzahlen [1], die der Pumpenhersteller mit Einverständnis des Kunden bei der Auslegung berücksichtigen kann; dabei gelten die Gesetzmäßigkeiten von Abschnitt 3.4.3 (Affinitätsgesetz). Die Kennlinien von Tauchmotorpumpen und Unterwassermotorpumpen sind bereits für die effektiven Drehzahlen ihrer Antriebsmaschinen ausgelegt.

Mit Drehzahlverstellungen (z.B. mittels Phasenanschaltsteuerung bei Leistungen bis zu wenigen kW, sonst meistens mittels Frequenzumrichter), Getrieben oder Riementrieben sowie bei Antrieb mittels Turbinen oder Verbrennungskraftmaschinen sind andere Pumpendrehzahlen möglich.

3.1.5 Spezifische Drehzahl \(n_q \) und Laufradbauformen

Die spezifische Drehzahl \(n_q \) ist eine aus der Ähnlichkeitsmechanik übernommene Vergleichszahl, die es gestattet, bei unterschiedlichen Betriebsdaten (Förderstrom \(Q_{opt} \), Förderhöhe \(H_{opt} \) und Drehzahl \(n \) eines Pumpenlaufades im Punkt besten Wirkungsgrades \(\eta_{opt} \)) Laufräder verschiedener Baugrößen miteinander zu vergleichen und ihre optimale Bauform (siehe Bild 2) sowie die Form der zugehörigen Pumpenkennlinie (siehe Abschnitt 3.1.6, Bild 5) zu klassifizieren.

\(n_q \) ist die gedachte Drehzahl eines geometrisch ähnlich veränderten Laufrades mit dem Förderstrom \(1 \text{ m}^3/s \) und der Förderhöhe \(1 \text{ m} \) im Punkt besten Wirkungsgrades und hat dieselbe Einheit wie die Drehzahl. Als zahlengleiche bautypische Kennzahl kann sie auch nach
dem rechten Teil der folgenden Gleichungen dimensionslos dargestellt werden [2]:

\[n_q = n \cdot \frac{\sqrt{Q_{\text{opt}}/T}}{(H_{\text{opt}}/1)^{1/4}} \]
\[= 333 \cdot n \cdot \frac{\sqrt{Q_{\text{opt}}}}{(g \cdot H_{\text{opt}})^{1/4}} \quad (3) \]

mit \(Q_{\text{opt}} \) in m³/s
\(H_{\text{opt}} \) in m
\(n \) in min⁻¹
\(n_q \) in min⁻¹

Bei mehrstufigen Pumpen ist für \(H_{\text{opt}} \) die Bestförderhöhe einer Stufe und bei zweistromigen Laufrädern für \(Q_{\text{opt}} \) der Bestförderstrom einer Laufradhälfte einzusetzen.

Mit wachsender spezifischer Drehzahl \(n_q \) werden die Laufräder mit zunächst noch radialem Austritt mehr und mehr halbaxial („diagonal“) und schließlich axial durchströmt (siehe Bild 2); auch die Leitvorrichtungen an den radialen Gehäusen (z.B. Spiralgehäusen) werden immer voluminöser, so lange eine Abführung der Strömung in radialer Richtung noch möglich ist. Schließlich kann die Strömung nur noch axial (z.B. in Rohrgehäusen) abgeführt werden.

Grobe Anhaltswerte:

<table>
<thead>
<tr>
<th>(n_q)</th>
<th>Laufradform</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis etwa 25</td>
<td>Radialrad (Hochdruckrad),</td>
</tr>
<tr>
<td>bis etwa 40</td>
<td>Radialrad (Niederdrukrad),</td>
</tr>
<tr>
<td>bis etwa 70</td>
<td>bis etwa 160</td>
</tr>
<tr>
<td>etwa von 140 bis 400</td>
<td></td>
</tr>
</tbody>
</table>

Bild 3 erlaubt die graphische Ermittlung. Weitere Laufradbaufümmen sind in Bild 4 dargestellt: Sternräder werden in selbstansaugenden Pumpen eingesetzt. Peripheralräder erweitern den Bereich der spezifischen Drehzahl nach unten bis etwa \(n_q = 5 \) (eine bis zu 3-stufige Pumpenbauart ist möglich); bei noch kleineren spezifischen Drehzahlen sind rotierende (z.B. Exzentschneckenumpummen mit \(n_q = 0,1 \) bis 3) oder oszillierende Verdrängerpumpen (Kolbenpumpen) zu bevorzugen.

Der Zahlenwert der spezifischen Drehzahl wird auch bei der Auswahl von Einflussfaktoren zur Umrechnung von Pumpenkennlinien bei der Förderung von zähen oder feststoffhaltigen Flüssigkeiten (siehe Abschnitte 4 und 6) benötigt.

In den angelsächsischen Ländern wird die spezifische Drehzahl mit „type number K“ bezeichnet, in den USA mit \(N_s \):

\[K = n_q / 52,9 \]
\[N_s = n_q / 51,6 \quad (4) \]

Bild 2: Einfluss der spezifischen Drehzahl \(n_q \) auf die Bauformen von Kreiselpumennafräden. Die Leitapparate (Gehäuse) einstufiger Pumpen sind angedeutet.
Spezifische Drehzahl - weitere Laufradbaufomren

3.1.6 Kennlinien der Pumpen

Im Gegensatz zu einer Verdrängerpumpe (z. B. Kolbenpumpe) liefert die Kreiselpumpe bei konstanter Drehzahl einen veränderlichen (mit abnehmender Förderhöhe H zunehmenden) Förderstrom Q. Sie besitzt daher die Fähigkeit der Selbstanpassung bei Veränderung der Anlagenkennlinie (siehe Abschnitt 3.2.2). Weiter hängen vom Förderstrom Q der Leis-

Bild 3: Graphische Ermittlung der spezifischen Drehzahl \(n_q \) (vergrößerte Darstellung siehe Seite 84)
Beispiel: \(Q_{opt} = 66 \text{ m}^3/\text{h} = 18,3 \text{ l/s}; \quad n = 1450 \text{ 1/min}; \quad H_{opt} = 17,5 \text{ m}. \) Gefunden: \(n_q = 23 \text{ 1/min} \)

Bild 4: Laufradbaufomren für reine Flüssigkeiten

*) Draufsicht ohne Deckscheibe dargestellt
Bild 5: Tendenzialer Einfluss der spezifischen Drehzahl \(n_q \) auf die Kennlinien von Kreiselpumpen. (Nicht maßstäblich! \(\text{NPSH}_{\text{erf}} \) siehe Abschnitt 3.5.4)

Bild 6: Drei Beispiele für Kennlinien von Pumpen verschiedener spezifischer Drehzahl

\(a: \) mit Radialrad, \(n_q \approx 20; \)
\(b: \) mit Halbaxialrad \(n_q \approx 80; \)
\(c: \) mit Axialrad \(n_q \approx 200. \)
(\(\text{NPSH}_{\text{erf}} \) siehe Abschnitt 3.5.4)

Prinzipiell kann die QH-Kurve flach oder steil verlaufen. Bei einer steilen Kurve ändert sich der Förderstrom \(Q \) bei gleicher Förderhöhenänderung \(\Delta H \) weniger als bei flacher Kennlinie (Bild 7). Das kann bei Förderstromregelungen von Vorteil sein.
Kennlinien

QH-Kennlinien haben normalerweise einen stabilen Verlauf, das heißt eine mit zunehmendem Förderstrom \(Q \) abfallende Förderhöhe. Bei kleinen spezialisierten Drehzahlen kann es vorkommen, dass im Bereich geringer Förderströme (also bei äußerster Teillast) die Förderhöhe \(H \) mit abnehmendem Förderstrom \(Q \) abfällt, also instabil ist (in Bild 7 gestrichelt). Diese Kennlinienform muss nur dann vermieden werden, wenn sie mit der Anlagenkennlinie zwei Schnittpunkte bilden kann, insbesondere, wenn die Pumpe zum Parallelbetrieb bei Teillast vorgesehen ist (siehe unter 3.4.4) oder wenn sie im instabilen Bereich in einen Energie speichernden (= mit Gas oder Dampf gefüllten) Druckbehälter fördern soll; in allen anderen Fällen ist sie der stabilen Kennlinie gleichwertig.

Wenn nicht anders angegeben, beziehen sich die Kennlinien auf die Dichte \(\varrho \) und die kinematische Viskosität \(\nu \) von kaltem, entgastem Wasser.
Bild 8: Kreiselpumpenanlagen mit unterschiedlich ausgeführten Behältern im Saugbetrieb.

A = offener Druckbehälter mit Rohrmündung unter dem Wasserspiegel
B = geschlossener Druckbehälter mit freiem Auslauf aus dem Rohr
C = geschlossener Druckbehälter mit Rohrmündung unter dem Wasserspiegel
D = offener Saug- bzw. Zulaufbehälter
E = geschlossener Saug- bzw. Zulaufbehälter

\(v_a \) und \(v_e \) sind die (meistens vernachlässigbar geringen) Strömungsgeschwindigkeiten in den Behältern A und C an den Stellen \(\mathbb{A} \) bzw. in den Behältern D und E an den Stellen \(\mathbb{E} \); im Falle B jedoch ist \(v_a \) die nicht vernachlässigbare Auslaufgeschwindigkeit aus dem Rohrquerschnitt \(\mathbb{A} \).

3.2 Anlagedaten
3.2.1 Förderhöhe \(H_A \) der Anlage
3.2.1.1 Bernoulli-Gleichung

Die Bernoulli-Gleichung postuliert die Gleichwertigkeit der Energieformen mit geodätischen, statischen und dynamischen Erscheinungsformen. Die Förderhöhe \(H_A \) der Anlage setzt sich danach bei einer alsreibungsfrei angenommenen Strömung aus folgenden drei Anteilen zusammen (siehe Bilder 8 und 9):

- \(H_{geo} \) (geodätische Förderhöhe) ist der Höhenunterschied zwischen saug- und druckseitigem Flüssigkeitsspiegel. Mündet die Druckleitung oberhalb des Flüssigkeitsspiegels, wird auf die Mitte des Ausflussquerschnitt-
Förderhöhe der Anlage · Bernoulli

tes bezogen (siehe Bilder 8B und 9B).

- \(\frac{(p_a - p_e)}{(\rho \cdot g)} \) ist die Differenz der über dem saug- und druckseitigen Flüssigkeitsspiegel liegenden Druckhöhen bei mindestens einem geschlossenen Behälter B, C oder E (siehe Bilder 8B, C, E und 9B, C, E).

- \(\frac{(v_a^2- v_e^2)}{2g} \) ist die Differenz der Geschwindigkeitshöhen in den Behältern.

Bei einer realen Strömung müssen zu diesen Anteilen noch die Reibungsverluste (= Druckhöhenverluste) hinzuzählt werden:

- \(\Sigma H_v \) ist die Summe aller Druckhöhenverluste (= Strömungswiderstände in Rohrleitungen, Armaturen, Formstücken usw. in der Saug- und Druckleitung sowie der Ein-

und Auslaufverluste, siehe Abschnitt 3.2.1.2), die in der Praxis als Druckverluste in der Anlage bezeichnet werden. Aus allen vier Anteilen ergibt sich die Förderhöhe \(H_A \) der Anlage:

\[
H_A = H_{geo} + \frac{(p_a - p_e)}{(\rho \cdot g)} + \frac{(v_a^2- v_e^2)}{2g} + \Sigma H_v
\]

(5)

mit allen Förderhöhen \(H \) in m, allen Drücken \(p \) in Pa (1 bar = 100 000 Pa), allen Geschwindigkeiten \(v \) in m/s, der Dichte \(\rho \) in kg/m\(^3\), Fallbeschleunigung \(g = 9,81 \text{ m/s}^2 \).
In der Praxis kann die Differenz der Geschwindigkeitshöhen häufig vernachlässigt werden. Dann vereinfacht sich die Gleichung (5) bei mindestens einem geschlossenen Behälter B, C oder E (siehe Bilder 8B, 9B, C, E) zu

\[H_A = H_{geo} + (p_a - p_e)/(\varrho \cdot g) + \Sigma H_v \]
(6)

und bei offenen Behältern A und D (siehe Bilder 8A, D und 9A, D) zu

\[H_A = H_{geo} + \Sigma H_v. \]
(7)

3.2.1.2 Druckverluste \(p_v \) durch Strömungswiderstände

Der Druckverlust \(p_v \) wird durch Wandreibung in allen Rohrleitungen und durch Widerstände in Armaturen, Formstücken usw. verursacht. Er wird aus dem von der Dichte \(\varrho \) unabhängigen Druckhöhenverlust \(H_v \) berechnet nach der Gleichung

\[p_v = \varrho \cdot g \cdot H_v \]
(8)

mit

- \(\varrho \): Dichte in kg/m³,
- \(g \): Fallbeschleunigung 9,81 m/s²,
- \(H_v \): Druckhöhenverlust in m,
- \(p_v \): Druckverlust in Pa (1 bar = 100 000 Pa).

3.2.1.2.1 Druckhöhenverluste \(H_v \) in geraden Rohrleitungen

Für den Druckhöhenverlust einer Rohrströmung im geraden Rohr mit Kreisquerschnitt gilt allgemein

\[H_v = \lambda \cdot \frac{L}{d} \cdot \frac{v^2}{2g} \]
(9)

mit

- \(\lambda \): Rohrreibungswiderstand nach den Gleichungen (12) bis (14),
- \(L \): Rohrlänge in m,
- \(d \): Rohrinnendurchmesser in m,
- \(v \): Durchflussgeschwindigkeit in m/s (= 4Q/πd² mit Q in m³/s),
- \(g \): Fallbeschleunigung 9,81 m/s².

Bei nicht kreisrundem Rohrquerschnitt ist zu setzen:

Bild 10: Rohrreibungswiderstand \(\lambda \) als Funktion der REYNOLDS-Zahl \(Re \) und der relativen Rauhigkeit \(d/k \) (vergrößerte Darstellung siehe Seite 85)
Druckhöhenverluste in geraden Rohrleitungen

\[d = 4A/U \] \hspace{1cm} (10)

mit

A durchströmter Querschnitt in m²,
U benetzter Umfang des durchströmten Querschnitts A in m, wobei in offenen Gerinnen die freie Oberfläche nicht als Umfang mitgerechnet wird.

Empfohlene Durchflussgeschwindigkeiten

für Kaltwasser:
Saugleitung 0,7 – 1,5 m/s,
Druckleitung 1,0 – 2,0 m/s,
für Heißwasser:
Saugleitung 0,5 – 1,0 m/s,
Druckleitung 1,5 – 3,5 m/s.

Der Rohrreibungsbeiwert \(\lambda \) wurde experimentell ermittelt und ist in Bild 10 dargestellt. Er ist nur abhängig vom Strömungszustand der Förderflüssigkeit und von der relativen Rauhigkeit \(d/k \) der durchflossenen Rohrleitung. Der Strömungszustand wird nach den Modellgesetzen durch die REYNOLDS-Zahl \(Re \) gekennzeichnet. Für kreisrunde Rohre gilt:

\[Re = \frac{v \cdot d}{\nu} \] \hspace{1cm} (11)

mit

\(v \) Durchflussgeschwindigkeit in m/s (= 4Q/\pi d² mit Q in m³/s),
\(d \) Rohrinnendurchmesser in m,
\(\nu \) kinematische Viskosität in m²/s, (für Wasser bei 20 °C genau 1,00 · 10⁻⁶ m²/s).

Bei nicht kreisrunden Rohrquerschnitten gilt wieder Gleichung (10) zur Ermittlung von \(d \).

Für hydraulisch glatte Rohre (z. B. blankgezogene Metall- oder Kunststoffrohre z. B. aus PE oder PVC) oder bei laminarer Strömung kann \(\lambda \) auch rechnerisch ermittelt werden:

Im Bereich der laminaren Rohrströmung mit Re < 2320 ist unabhängig von der Rauhigkeit

\[\lambda = \frac{64}{Re} \] \hspace{1cm} (12)

Bei turbulenter Strömung mit Re > 2320 können die Zusammenhänge in hydraulisch glatten Rohren mit einer empirischen Gleichung von ECK wiedergegeben werden (bis zu Re <10⁸ sind die Abweichungen kleiner als 1%):

\[\lambda = \frac{0,309}{(\lg Re)^2} \] \hspace{1cm} (13)

Nach Bild 10 ist der Rohrreibungsbeiwert \(\lambda \) noch von einem weiteren dimensionslosen Parameter, der relativen Rauhigkeit der Rohrinnenwand \(d/k \), abhängig; darin ist k die gemittelte absolute Rauhigkeit (Körnung) der Rohrinnenwand, für die Anhaltswerte in Tabelle 3 angegeben sind. Zu beachten ist, dass sowohl \(d \) als auch \(k \) in der gleichen Dimension, z. B. mm, anzugeben sind!

Wie das Bild 10 zeigt, hängt \(\lambda \) oberhalb der Grenzkurve nur noch von der relativen Rohr­rauhigkeit \(d/k \) ab. Nach einer empirischen Gleichung von MOODY kann man in diesem Bereich setzen:

\[\lambda = 0,0055 + 0,15(\sqrt{d/k}) \] \hspace{1cm} (14)

In Bild 11 sind zum praktischen Gebrauch die Druckhöhenverluste \(H_v \) je 100 m gerader Stahlrohreleitung abhängig vom Förderstrom \(Q \) und vom Inndurchmesser \(d \) angegeben. Die Werte gelten nur für reines kaltes Wasser bzw. für Flüssigkeiten gleicher kinematischer Viskosität, bei voller Füllung der Rohrleitung und für absolute Rauhigkeiten der Rohrinnenwand von k = 0,05 mm, z.B. für neue nahtlose oder längsge­schweißte Stahlrohre (Inndurchmesser nach Tabelle 4 beachten).

Der Einfluss einer vergrößerten Wandrauhigkeit k soll nachstehend für einen häufig genutzten Bereich im Bild 11 (Nennweite 50 bis 300, Strömungsgeschwindigkeit 0,8 bis 3,0 m/s) demonstriert werden: Dieses kräftig gerasterte Feld in Bild 11 entspricht dem ebenso markierten Feld in Bild 10 bei einer absoluten mittleren Rauhigkeit k = 0,05 mm. Bei einer 6-fach vergrößerten Rauhigkeit (leicht verkrustetes altes Stahlrohr mit k = 0,30 mm) liegen die Rohrebungs­zahlen \(\lambda \) in Bild 10 (und proportional dazu die Druckhöhenverluste \(H_v \)) in dem schwach gerasterten Feld nur um 25 – 60% höher als zuvor.

Bei Abwasserrohren muss die durch Verschmutzung bedingte erhöhte Rauhigkeit der Rohr­innenwand berücksichtigt werden (siehe Abschnitt 3.6). Bei Rohren mit sehr starken Inkrustierungen kann der tatsächliche Druckhöhenverlust nur durch Versuche ermittelt werden. Abweichungen vom
Tabelle 3: Mittlere Rauhigkeitserhebungen k (absolute Rauhigkeit) von Rohren in grober Abschätzung

<table>
<thead>
<tr>
<th>Rohre aus</th>
<th>Zustand der Innenwand</th>
<th>1 µm</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl</td>
<td>neu, nahtlos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walzhaut gebeizt verzinkt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>längsgeschweißt, Walzhaut bituminiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>genietet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>alt, mäßig verrosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>leicht verkrustet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stark verkrustet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nach Reinigung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestzement</td>
<td>neu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ton (Drainage)</td>
<td>neu, roh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beton</td>
<td>neu, mit Glattstrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schleuderbeton</td>
<td>neu, mit Glattstrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stahlbeton</td>
<td>neu, alt, mit Glattstrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betone</td>
<td>all Betone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallrohre</td>
<td>blankgezogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glas, Kunststoff</td>
<td>neu, nicht versprödet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gummschlauch</td>
<td>neu, nach langem Wasserbetrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauerwerk</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4: Innendurchmesser d und Wandstärke s in mm und Gewichte handelsüblicher Stahlrohre und ihrer Wasserfüllung in kg/m nach ENV 10 220 (früher DIN ISO 4200). $D =$ Außendurchmesser, $s =$ Wandstärke.

<table>
<thead>
<tr>
<th>DN</th>
<th>D</th>
<th>Alle Maße in mm</th>
<th>s</th>
<th>d</th>
<th>s</th>
<th>d</th>
<th>Gewicht in kg/m</th>
<th>Wasser</th>
<th>Gewicht in kg/m</th>
<th>Wasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>21.3</td>
<td>2.0, 17,3</td>
<td>1,8</td>
<td>17,7</td>
<td>0,952</td>
<td>0,235</td>
<td>0,866</td>
<td>0,246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>26.9</td>
<td>2.0, 22,9</td>
<td>1,8</td>
<td>23,3</td>
<td>1,78</td>
<td>0,665</td>
<td>1,11</td>
<td>0,426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>33.7</td>
<td>2.3, 29,1</td>
<td>2,0</td>
<td>29,7</td>
<td>2,55</td>
<td>1,09</td>
<td>1,56</td>
<td>0,692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>42.4</td>
<td>2.6, 37,2</td>
<td>2,3</td>
<td>37,8</td>
<td>2,93</td>
<td>1,46</td>
<td>2,27</td>
<td>1,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>48.3</td>
<td>2.6, 43,1</td>
<td>2,3</td>
<td>43,7</td>
<td>4,11</td>
<td>2,33</td>
<td>2,61</td>
<td>1,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>60.3</td>
<td>2.9, 54,5</td>
<td>2,3</td>
<td>55,7</td>
<td>4,71</td>
<td>3,88</td>
<td>5,24</td>
<td>3,95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>76.1</td>
<td>2.9, 70,3</td>
<td>2,6</td>
<td>70,9</td>
<td>6,76</td>
<td>5,34</td>
<td>6,15</td>
<td>5,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>88.9</td>
<td>3.2, 82,5</td>
<td>2,9</td>
<td>83,1</td>
<td>9,83</td>
<td>9,00</td>
<td>8,77</td>
<td>9,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>114.3</td>
<td>3.6, 107,1</td>
<td>3,2</td>
<td>107,9</td>
<td>13,4</td>
<td>13,6</td>
<td>12,1</td>
<td>13,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>139.7</td>
<td>4.0, 131,7</td>
<td>3,6</td>
<td>132,5</td>
<td>18,2</td>
<td>19,9</td>
<td>16,2</td>
<td>20,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>168.3</td>
<td>4.5, 159,3</td>
<td>4,0</td>
<td>160,3</td>
<td>23,1</td>
<td>33,5</td>
<td>23,8</td>
<td>34,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>219.1</td>
<td>6,3, 206,5</td>
<td>4,5</td>
<td>210,1</td>
<td>31,1</td>
<td>53,2</td>
<td>33,0</td>
<td>54,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>273.0</td>
<td>6,3, 260,4</td>
<td>5,0</td>
<td>263,0</td>
<td>41,4</td>
<td>90,5</td>
<td>40,4</td>
<td>76,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>323.9</td>
<td>7,1, 309,7</td>
<td>5,6</td>
<td>312,7</td>
<td>55,5</td>
<td>75,3</td>
<td>44,0</td>
<td>93,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>355.6</td>
<td>8,0, 339,6</td>
<td>5,6</td>
<td>344,4</td>
<td>68,6</td>
<td>90,5</td>
<td>48,3</td>
<td>93,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>406.4</td>
<td>8,8, 388,8</td>
<td>6,3</td>
<td>393,8</td>
<td>86,3</td>
<td>118,7</td>
<td>62,2</td>
<td>121,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>508.0</td>
<td>11,0, 486,0</td>
<td>6,3</td>
<td>495,4</td>
<td>135</td>
<td>185,4</td>
<td>77,9</td>
<td>192,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>610.0</td>
<td>12,5, 585,0</td>
<td>6,3</td>
<td>597,4</td>
<td>184</td>
<td>268,6</td>
<td>93,8</td>
<td>280,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ab DN 32 identisch mit DIN 2448 ** ab DN 25 identisch mit DIN 2458
Bild 11: Druckhöhenverluste H_v für neue Stahldröhre ($k = 0,05 \text{ mm}$) (vergrößerte Darstellung siehe Seite 86)

Bild 12: Druckhöhenverluste H_v für hydraulisch glatte Rohre ($k = 0$) (vergrößerte Darstellung siehe Seite 87). (Für Kunststoffrohre bei $t \neq 10^\circ\text{C}$ mit Temperaturfaktor φ zu multiplizieren)
Solldurchmesser ändern den Druckhöhenverlust zudem beträchtlich, da der Rohrinnen- durchmesser mit der 5. Potenz in die Gleichung (9) eingeht! (Z.B. erhöht ein um 5% kleinerer Innendurchmesser den Druckhöhenverlust bereits um 30%). Deswegen darf der Innendurchmesser bei Berechnungen nicht einfach durch die Nennweite ersetzt werden!

3.2.1.2.2 Druckhöhenverluste H_v in Armaturen und Formstücken

Für die Druckhöhenverluste H_v in Armaturen und Formstücken gilt der Ansatz

$$H_v = \zeta \cdot \frac{v^2}{2g} \quad (15)$$

mit
- ζ Verlustbeiwert
- v Durchflussgeschwindigkeit
- g Fallbeschleunigung 9,81 m/s².

Die Tabellen 5 bis 8 und die Bilder 13 bis 15 geben Auskunft über die einzelnen Verlustbeiwerte ζ in Armaturen und Formstücken bei Betrieb mit kaltem Wasser.

Bild 13: Schematische Darstellung der Armaturen-Bauformen nach Tabelle 5

![Bild 13: Schematische Darstellung der Armaturen-Bauformen nach Tabelle 5](image_url)
<table>
<thead>
<tr>
<th>Art der Armatur</th>
<th>Bauform</th>
<th>Verlustbeiwert ζ bei $\text{DN} = \ldots$</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanschhahn (d<sub>f</sub> = DN)</td>
<td>min</td>
<td>0,1</td>
<td>bei $d_f < \text{DN}$</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>0,65</td>
<td>siehe Fußnote 1)</td>
</tr>
<tr>
<td>Rundhahn (d<sub>f</sub> = DN)</td>
<td>min</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>Hähne (d<sub>f</sub> = DN)</td>
<td>min</td>
<td>0,10</td>
<td>bei $d_f < \text{DN}$</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>0,15</td>
<td>$\zeta = 0,4$ bis 1,1</td>
</tr>
<tr>
<td>Klappen PN 2,5 + 10</td>
<td>min</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>1,20</td>
<td></td>
</tr>
<tr>
<td>Klappen PN 16 + 25</td>
<td>min</td>
<td>2,04</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>2,50*</td>
<td></td>
</tr>
<tr>
<td>Ventile, geschmiert</td>
<td>min</td>
<td>6,0</td>
<td>bei Optimierung</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>6,8</td>
<td>$\zeta = 2$ bis 3 erreichbar</td>
</tr>
<tr>
<td>Compactventile</td>
<td>min</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Eckventile</td>
<td>min</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Schrägsitzventile</td>
<td>min</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>Freihubventile</td>
<td>min</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Membranventile</td>
<td>min</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>Rückschlagventile, Gerätsitz</td>
<td>min</td>
<td>3,0</td>
<td>ab DN 125 axial erweitert</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>Rückschlagventile, axial</td>
<td>min</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Rückschlagventile, Schrägsitz</td>
<td>min</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>Fußventile</td>
<td>min</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>Rückschlagklappen</td>
<td>min</td>
<td>0,5</td>
<td>Klappen ohne Hebel und Gewichte 2)</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>Hydrostop $v = 4 \text{ m/s}$</td>
<td>min</td>
<td>0,9</td>
<td>in gereinigtem Zustand</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>min</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>Siehe</td>
<td>min</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

1) Der untere Absperrdurchmesser d_f kleiner als der Durchmesser der Anschlussoffnete DN, sind die Widerstandsbeiwerte ζ um $\text{DN}(d_f) = \text{DN}_x$ bis $x = 5$ bis 6 zu vergrößern.

2) Bei nur 3/4er-Öffnung (d. h. kleinen Strömungsgeschwindigkeiten) steigen die Verlustbeiwerte auf die „Max“-Werte an. Mit steigender Durchflussgeschwindigkeit v (in m/s) fallen die Verlustbeiwerte ab etwa nach der Beziehung $\zeta = 4v$.

Bauformen siehe Bild 13.
Tabelle 6: Verlustbeiwerte ζ in Rohrbögen und Kniestücken

<table>
<thead>
<tr>
<th>α</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oberfläche glatt</td>
<td>Oberfläche rauh</td>
<td>Oberfläche glatt</td>
<td>Oberfläche rauh</td>
<td>Oberfläche glatt</td>
</tr>
<tr>
<td>ζ für $R = 0$</td>
<td>0,07</td>
<td>0,10</td>
<td>0,14</td>
<td>0,20</td>
<td>0,25</td>
</tr>
<tr>
<td>ζ für $R = d$</td>
<td>0,03</td>
<td>–</td>
<td>0,07</td>
<td>–</td>
<td>0,14</td>
</tr>
<tr>
<td>ζ für $R = 2d$</td>
<td>0,03</td>
<td>–</td>
<td>0,06</td>
<td>–</td>
<td>0,09</td>
</tr>
<tr>
<td>ζ für $R \geq 5d$</td>
<td>0,03</td>
<td>–</td>
<td>0,06</td>
<td>–</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Kniestücke geschweißt

| Anzahl der Rundnähle | – | – | – | 2 | – | 3 | – | 3 | – |

Anmerkung: Bei Abzweigstücken nach Tabelle 7 und Übergangsstücken nach Tabelle 8 ist zu unterscheiden zwischen den irreversiblen Druckverlusten (= Druckminderungen)

$$p_v = \zeta \cdot \rho \cdot \frac{v^2}{2}$$ (16) mit

- p_v: Druckverlust in Pa,
- ζ: Verlustbeiwert,
- ρ: Dichte in kg/m³,
- v: Durchflussgeschwindigkeit in m/s
einerseits und den reversiblen Druckänderungen der reibungsfreien Strömung gemäß der BERNOULLI-Gleichung (siehe unter 3.2.1.1)

$$p_2 - p_1 = \rho \cdot \frac{(v_1^2 - v_2^2)}{2}$$ (17) andererseits. Bei beschleunigten Strömungen (z.B. Rohrverengungen) ist $p_2 - p_1$ immer negativ, bei verzögerten Strömungen (z.B. Rohrerweiterungen) immer positiv. Wenn die gesamte Druckänderung als arithmetische Summe aus p_v und $p_2 - p_1$ ermittelt wird, sind die nach Gleichung 16 ermittelten Druckverluste immer negativ anzusetzen.

Tabelle 7: Verlustbeiwerte ζ in Formstücken

Zusammengesetzte Rohrbögen (Krümmer):

Der ζ-Wert des einfachen 90-Krümmers ist beim Zusammenbau zu Mehr-fachkrümmern der nachfolgenden Art nicht zu verdoppeln, sondern nur mit dem jeweils angegebenen Faktor zu multiplizieren, um den Verlust des Mehrfachkrümmers zu erhalten.

Dehnungsausgleicher:

- Wellrohrausgleicher mit/ohne Leitrohr: $\zeta = 0,3/2,0$,
- Glattrohr-Lyrabogen: $\zeta = 0,6$ bis 0,8,
- Faltenrohr-Lyrabogen: $\zeta = 1,3$ bis 1,6,
- Wellrohr-Lyrabogen: $\zeta = 3,2$ bis 4

Einlauffüße:

Einlaufkante

<table>
<thead>
<tr>
<th>scharf</th>
<th>gebrochen</th>
<th>für $\delta = 75$</th>
<th>60</th>
<th>45</th>
<th>ζ</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
</tr>
</thead>
</table>

Auslauffüße:

- $\zeta = 1$ nach einem genügend langen geraden Rohrstück bei annähernd gleichförmiger Geschwindigkeit im Austrittsquerschnitt.
- $\zeta = 2$ bei stark ungleichförmiger Geschwindigkeit z.B. unmittelbar nach Krümmer, Armatur usw.

Fortsetzung siehe nächste Seite
Durchflussmessgeräte:

Kurzventurirohr \(\alpha = 0° \)

\[\zeta \approx 0 \]

\[\zeta \approx 1,6 \]

\[\zeta = 0,7 \]

\[\zeta = 0,0 \]

Normblende \(\zeta \approx 0,05 \)

Wasserzähler (Volumenmesser) \(\zeta \approx 10 \)

Bei Hauswasserzählern ist für die Nennbelastung ein Druckverlust von max. 1 bar festgelegt, der praktisch nicht unterschritten wird.

Abzweigstücke: (Abzweig mit gleicher Nennweite)

anmerkung: Die Verlustbeiwerte \(\zeta \) für den Abzweigstrom \(Q_a \) bzw. \(\zeta_d \) für den durchfließenden Strom \(Q_d = Q - Q_a \), beziehen sich auf die Stutzen-Geschwindigkeit des Gesamtstromes \(Q \). Wegen dieser Definition sind negative Zahlenwerte für \(\zeta \) oder \(\zeta_d \) möglich; sie bedeuten Druckgewinn statt Druckverlust. Nicht zu verwechseln mit den reversiblen Druckänderungen aufgrund der BERNOULLI-Gleichung, siehe Anmerkung zu Tabellen 7 und 8 im Text.

Die Verlustbeiwerte \(\zeta \) für den Abzweigstrom \(Q_a \) bzw. \(\zeta_d \) für den durchfließenden Strom \(Q_d = Q - Q_a \), beziehen sich auf die Stutzen-Geschwindigkeit des Gesamtstromes \(Q \). Wegen dieser Definition sind negative Zahlenwerte für \(\zeta \) oder \(\zeta_d \) möglich; sie bedeuten Druckgewinn statt Druckverlust. Nicht zu verwechseln mit den reversiblen Druckänderungen aufgrund der BERNOULLI-Gleichung, siehe Anmerkung zu Tabellen 7 und 8 im Text.

\[\zeta = 16 \cdot d^4/k_{v}^2 \]

mit

\(d \) Bezugsdurchmesser (Nennweise) der Armatur in cm (!).

Häufig wird zur Berechnung von Druckverlusten in Armaturen bei Wasserversorgung anstelle des Verlustbeiwertes \(\zeta \) noch der sogenannte \(k_v \)-Wert benutzt:

\[p_v = (Q / k_v)^2 \cdot \rho /1000 \]

mit

\(Q \) Volumenstrom in m³/h (!),
\(\rho \) Dichte des Wassers in kg/m³,
\(p_v \) Druckverlust in bar (!).

Der \(k_v \)-Wert (in der Einheit m³/h) ist derjenige Volumenstrom, der sich bei der Durchströmung einer Absperr- oder Regelarmatur mit kaltem Wasser bei einem Druckverlust \(p_v \) in bar und dem Volumenstrom \(Q \) in m³/h an. In der Form \(k_v \) gilt er für die volle Öffnung der Armatur.

Umrechnung für kaltes Wasser:

\[\zeta = 16 \cdot d^4/k_{v}^2 \]

mit

\(d \) Bezugsdurchmesser (Nennweise) der Armatur in cm (!).

Tabelle 8: Verlustbeiwerte \(\zeta \) in Übergangsstücken

<table>
<thead>
<tr>
<th>Form</th>
<th>(d/D)</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (\alpha = 8°)</td>
<td>(\zeta \approx 0,56)</td>
<td>0,41</td>
<td>0,26</td>
<td>0,13</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>II (\alpha = 15°)</td>
<td>(\zeta \approx 0,15)</td>
<td>0,11</td>
<td>0,07</td>
<td>0,03</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>III (\alpha = 20°)</td>
<td>(\zeta \approx 0,23)</td>
<td>0,17</td>
<td>0,11</td>
<td>0,05</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>IV (20° < \alpha < 40°)</td>
<td>(\zeta \approx 0,21)</td>
<td>0,10</td>
<td>0,05</td>
<td>0,02</td>
<td>0,01</td>
<td></td>
</tr>
</tbody>
</table>

Bild 14: Einfluss der Aus-

rundung von konkaver und

konvexer Seite auf den Verlust-

beiwert \(\zeta \) von Krümmern mit

quadratischem Querschnitt

Tabelle 7, Fortsetzung

Durchflussmessgeräte:

Kurzventurirohr \(\alpha = 30° \)

\[\frac{Q_a}{Q} = \]

\(\zeta_a = -0,4 \)

\(\zeta_d = 0,17 \)

\(\zeta_a = 0,88 \)

\(\zeta_d = -0,08 \)

\(\zeta_a = -0,38 \)

\(\zeta_d = 0,17 \)

\(\zeta_a = 0,68 \)

\(\zeta_d = -0,06 \)
3.2.2 Kennlinien der Anlage

Die Anlagenkennlinie ist die graphische Darstellung der in der Anlage erforderlichen Anlagenförderhöhe H_A über dem Förderstrom Q. Sie setzt sich zusammen aus statischen und dynamischen Anteilen (Bild 16).

Die statischen Anteile bestehen aus den beiden vom Förderstrom unabhängigen Teilen geodätische Förderhöhe H_{geo} und der Druckhöhendifferenz $(p_a-p_e)/(\rho \cdot g)$ zwischen Ein- und Austrittsbehälter der Anlage. Die Druckhöhendifferenz entfällt, wenn beide Behälter offen sind.

Die dynamischen Anteile bestehen aus dem mit wachsendem...
Förderstrom Q quadratisch ansteigenden Druckhöhenverlust H_c (siehe Abschnitt 3.2.1.2) und der Differenz der Geschwindigkeitshöhen $(v_a^2-v_e^2)/2g$ im Ein- und Austrittsquerschnitt der Anlage. Zur Berechnung dieser Parabel genügen ein Punkt bei $Q = 0$ und ein Punkt bei $Q > 0$.

Bei hintereinandergeschalteten Rohrleitungen (Serienorschaltung) werden die einzelnen berechneten Anlagenkennlinien H_{A1}, H_{A2} usw. über Q aufgetragen und die jeweiligen Förderhöhen miteinander addiert zu einer gemeinsamen Anlagenkennlinie $H_A = f(Q)$.

Bei verzweigten Rohrleitungen werden die Anlagenkennlinien H_{A1}, H_{A2} usw. der einzelnen Rohrstränge ab dem Verzweigungspunkt (bzw. bis zum Verzweigungspunkt) jede für sich berechnet und über Q aufgetragen; von allen parallel laufenden Strängen werden dann für jede Förderhöhe H_A die jeweiligen Förderströme Q_1, Q_2 usw. zu einer gemeinsamen Anlagenkennlinie $H_A = f(Q)$ miteinander addiert. Die beiden Abschnitte vor und nach dem Verzweigungspunkt müssen dann wie bei der Hintereinanderschaltung zusammengefasst werden.

Bild 17: Sammelkennfeld einer Spiralgehäusepumpen-Baureihe bei $n = 2900 \text{ min}^{-1}$.
(1. Zahl = Nennweite des Druckstutzens, 2. Zahl = Laufradnendurchmesser)
3.3 Auswahl der Pumpe

3.3.1 Hydraulische Auslegung

Die zur Auswahl der Pumpengröße benötigten Daten Förderstrom Q und Förderhöhe H des gewünschten Betriebspunktes werden aus der Anlagenkennlinie als bekannt vorausgesetzt, die Netzfrequenz ist auch vorgegeben. Damit lassen sich aus einem Kennfeld der Verkaufsunterlage (auch Sammelkennfeld genannt, siehe Bild 17 oder Bild 19) Pumpenbaugröße, Pumpendrehzahl und ggfs. die Stufenzahl z auswählen. Die weiteren Kenngrößen der ausgesuchten Pumpe, wie Pumpenwirkungsgrad η, Leistungsbedarf P, NPSH$_{ref}$ (siehe Abschnitt 3.5.4) und Abdrehdurchmesser D_r können dann aus der entspre-

Bild 18: Vollständige Kennlinie einer Kreiselpumpe

Bild 19: Sammelkennfeld einer Baureihe mehrstufiger Pumpen bei $n = 2900 \text{ min}^{-1}$
chenden Einzelkennlinie ermittelt werden (Beispiel siehe Bild 18).

Wenn keine besonderen Gründe für eine andere Wahl vorliegen, ist der Betriebspunkt in die Nähe von \(Q_{\text{opt}} \) (= Förderstrom im Punkt besten Wirkungsgrades) zu legen. Die Grenzen von \(Q_{\text{min}} \) und \(Q_{\text{max}} \) (z.B. wegen des Schwingungsverhaltens, wegen Geräuschen sowie Radial- oder Axialkräften) sind in den bauhineinspezifischen Verkaufsunterlagen angegeben oder werden auf Rückfragen genannt [1].

Abschließend sind die NPSH-Verhältnisse nach Abschnitt 3.5 zu überprüfen.

Eine mehrstufige Pumpe wird nach den gleichen Vorgehensweisen ausgewählt; das Kennfeld enthält als zusätzliche Information neben den Baugrößen noch die jeweilige Stufenzahl (Bild 19).

Bei hintereinander geschalteten Pumpen (Serienbetrieb) werden die Förderhöhen \(H_1, H_2 \) usw. der einzelnen Pumpenkennlinien (gegebenenfalls nach Abzug der zwischen ihnen liegenden Verluste) zu einer gemeinsamen Kennlinie \(H = f(Q) \) addiert.

Bei parallel betriebenen Pumpen werden die einzelnen Kennlinien \(H_1, H_2 \) usw. = \(f(Q) \) zunächst um die Druckhöhenverluste \(H_{\text{V1}}, H_{\text{V2}} \) usw. bis zum Knotenpunkt reduziert (Berechnung von \(H_{\text{V}} \) nach Abschnitt 3.2.1.2) und über \(Q \) aufgetragen; dann werden die Förderströme \(Q \) der reduzierten Kennlinien miteinander zur gemeinsamen Kennlinie einer „virtuellen“ Pumpe addiert. Diese arbeitet dann im Knotenpunkt mit der Kennlinie \(H_3 \) der restlichen Anlage zusammen.

3.3.2 Mechanische Auslegung

Bei der Auslegung der Pumpe sind neben den hydraulischen auch mechanische Gesichtspunkte zu berücksichtigen. Sie betreffen z.B.

- den Einfluss des maximalen Pumpenenddruckes und der Temperatur des Fördermediums auf bestimmte Einsatzgrenzen,
- die Auswahl der bestgeeigneten Wellendichtung mit eventhem Bedarf an Kühlung,
- die Überprüfung möglicher Schwingungen und Geräuschemissionen,
- die Werkstoffauswahl hinsichtlich der Korrosions- und Verschleißbedingungen unter Beachtung der Festigkeitsanforderungen und Temperaturgrenzen.

3.3.3 Auswahl des Elektromotors

3.3.3.1 Bemessung der Motorleistung

Bei energiesparenden Regelungsverfahren (z.B. Drehzahlregelungen) müssen die maximal möglichen Leistungsspitzen beachtet werden.

Die typischen Wirkungsgrade η und Leistungsfaktoren $\cos \phi$ von Normmotoren IP 54 bei 50 Hz sind in Bild 21 angegeben, der Verlauf von Wirkungsgrad η und Leistungsfaktor $\cos \phi$ über der relativen Motorbelastung P/P_N in Bild 22.

Tabelle 9 nennt die Schutzarten für Elektromotoren zum Schutz gegen Berührung, Fremdkörper und Wasser.

Die besondere Erwärmung von Elektromotoren und auch von elastischen Kupplungen beim Anfahren sowie die vorzeitige Abnutzung der Schaltschütze begrenzen die Schalthäufigkeit. Richtwerte für die maximal zulässigen Schaltzahlen Z siehe Tabelle 10, falls nichts anderes vorgegeben wird.

Tauchmotorpumpen (Bilder 1 j bis 1 m) sind fertigmontierte Aggregate, deren Motoren nicht besonders ausgelegt werden müssen [7]. Ihre elektrischen Daten gehen aus der Baureihenbeschreibung hervor. Der Motor ist innen mit Luft gefüllt und kann dank einer meist doppelt wirksamen Wellendichtung unter Wasser arbeiten.

Tabelle 9: Schutzarten für Elektromotoren nach EN 60 529 und DIN/VDE 0530 T.5 zum Schutz gegen Berührung, Fremdkörper und Wasser.

<table>
<thead>
<tr>
<th>Erste Stelle</th>
<th>Bedeutung</th>
<th>Erste Ziffer</th>
<th>Bedeutung</th>
<th>Zweite Stelle</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(nicht geschützt)</td>
<td>0</td>
<td>(nicht geschützt)</td>
<td>0</td>
<td>(nicht geschützt)</td>
</tr>
<tr>
<td>1</td>
<td>>50 mm Durchmesser</td>
<td>1</td>
<td>Handrücken</td>
<td>1</td>
<td>Handrücken</td>
</tr>
<tr>
<td>2</td>
<td>>12,5 mm Durchmesser</td>
<td>1</td>
<td>Finger</td>
<td>2</td>
<td>Finger</td>
</tr>
<tr>
<td>3</td>
<td>>2,5 mm Durchmesser</td>
<td>3</td>
<td>Werkzeug</td>
<td>3</td>
<td>Werkzeug</td>
</tr>
<tr>
<td>4</td>
<td>>1,0 mm Durchmesser</td>
<td>4</td>
<td>Draht</td>
<td>4</td>
<td>Draht</td>
</tr>
<tr>
<td>5</td>
<td>staubgeschützt</td>
<td>5</td>
<td>Draht</td>
<td>5</td>
<td>Draht</td>
</tr>
<tr>
<td>6</td>
<td>staubdicht</td>
<td>6</td>
<td>Draht</td>
<td>6</td>
<td>Draht</td>
</tr>
</tbody>
</table>

Bild 21: Typische Wirkungsgrade η und Leistungsfaktoren $\cos \phi$ von Normmotoren IP 54 bei 50 Hz über der Motornennleistung P_N.

Tabelle 10: Zulässige Anläufe Z pro Stunde für Elektromotoren

<table>
<thead>
<tr>
<th>Aufstellung des Motors</th>
<th>trocken</th>
<th>nass (Tauchmotoren)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motoren bis 4 kW</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Motoren bis 7,5 kW</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Motoren bis 11 kW</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Motoren bis 30 kW</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Motoren über 30 kW</td>
<td>≤10</td>
<td>10</td>
</tr>
</tbody>
</table>
3.3.3.2 Motoren für wellendichtungslose Pumpen

Zur Förderung von aggressiven, giftigen, leicht flüchtigen oder kostbaren Flüssigkeiten werden vor allem in der chemischen und petrochemischen Industrie oft wellendichtungslose Pumpen, das heißt Magnetkupplungspumpen (Bild 1 i) und Spaltrohrmotorpumpen (Bilder 1 n und o), eingesetzt. Eine Magnetkupplungspumpe wird durch ein primäres Magnetfeld angetrieben, das außerhalb ihres druckfesten Gehäuses umläuft und Sekundärmagnete innerhalb des Gehäuses synchron mitnimmt [1]. Der Primärteil wird dann an einen normalen trockenen Antriebsmotor gekuppelt. Die Laufräder von Spaltrohrmotorpumpen sitzen dagegen direkt auf der Motorwelle, so dass der Läufer in der Förderflüssigkeit umläuft, von der die Statorwicklung durch ein Spaltrohr getrennt wird [7].

Diese wellendichtungslosen Pumpenaggregate werden generell mit Hilfe von EDV-Angebotsprogrammen ausgelegt, wozu die nachstehenden Gesichtspunkte beachtet werden müssen:

- Der Rotor läuft in der Förderflüssigkeit, deren kinematische Zähigkeit n (Abschnitt 4.1) bekannt sein muss, weil sie die Reibungsverluste und damit die Motorleistung beeinflusst.
- Metallische Spalttöpfe bzw. Spaltrohre (z. B. aus 4.610) verursachen Wirbelstromverluste, die die Motorleistung vergrößern; nichtmetallische Spalttöpfe in Magnetkupplungspumpen aber nicht.
- Der Verdampfungsdruck der Förderflüssigkeit muss bekannt sein, damit Lagerschäden infolge Trockenlauf bei Verdampfung vermieden werden können. Überwachungsgeräte, die vor Trockenlauf warnen, sind zu empfehlen.
- Besondere Eigenschaften der Flüssigkeit, wie Feststoffgehalt, Neigung zum Erstarren oder zur Polimerisation oder zur Bildung von Krusten und Belägen, müssen bei der Auslegung bekannt sein.

Auch Unterwassermotorpumpen (U-Pumpen, meistens zur Wasserversorgung aus Brunnen) sind fertigmontierte Aggregate, deren Motoren nicht besonders ausgelegt werden müssen (Bild 1p). Bei ihnen sind Läufer und Wicklung vom Wasser benetzt [7]. Ihre elektrischen Daten und ihre zulässige Schaltfrequenz gehen aus der Bauwerkenbeschreibung hervor [1].

3.3.3.3 Anfahrverhalten

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direktanlauf</td>
<td>Schütz (mechanisch)</td>
<td>4–8 · Iₙ</td>
<td>ca. 0,5–5 s</td>
<td>hoch</td>
<td>sehr hoch</td>
<td>sehr hoch</td>
<td>1</td>
<td>alle</td>
<td>Seitens der EVU's meist begrenzt auf ≤ 4 kW</td>
</tr>
<tr>
<td>Stern-Dreieck-Anlauf</td>
<td>Schützkombination (mechanisch)</td>
<td>1/3 der Werte von Direktanlauf</td>
<td>ca. 3–10 s</td>
<td>hoch</td>
<td>sehr hoch</td>
<td>sehr hoch</td>
<td>1,5–3</td>
<td>alle; bei Spaltrohr- und U-Motoren tritt beim Umschalten ein größerer Drehzahlabfall auf</td>
<td>bei Motoren > 4 kW üblicherweise von den EVU's gefordert.</td>
</tr>
<tr>
<td>Teilspannungsanlauf</td>
<td>Anlasstransformator mit zumeist 70%iger Anzapfung</td>
<td>0,49 mal der Werte von Direktanlauf</td>
<td>ca. 3–10 s</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>5–15</td>
<td>alle</td>
<td>Beim Umschalten keine stromlose Phase. (Anwendung zugunsten Sanftanlauf rückläufig)</td>
</tr>
<tr>
<td>Sanftanlauf</td>
<td>Softstarter (Leistungslektronik)</td>
<td>frei einstellbar; üblich: 3 · Iₙ</td>
<td>ca. 10–20 s</td>
<td>hoch</td>
<td>gering</td>
<td>gering</td>
<td>5–15</td>
<td>alle</td>
<td>An- u. Abfahren stufenlos über Rampen auf je-weiligen Lastfall einstellbar: Keine hydraul. Stöße</td>
</tr>
<tr>
<td>Frequentzanlauf</td>
<td>Frequenzumrichter (Leistungslektronik)</td>
<td>1 · Iₙ</td>
<td>0–60 s</td>
<td>gering</td>
<td>gering</td>
<td>gering</td>
<td>ca. 30</td>
<td>alle</td>
<td>Für reines An- u. Abfahren zu teuer. Besser geeignet für Stell- u. Regelbetrieb</td>
</tr>
</tbody>
</table>

Im Falle der Direkteinschaltung (sofort volle Netzspannung auf den noch stehenden Motor) steht das gesamte Anlaufmoment von Anfang an zur Verfügung und das Aggregat erreicht nach kürzester Zeit die Betriebsdrehzahl. Für den Motor ist dieses Anlaufen am günstigsten, aber der gegenüber dem Nennstrom auf das 4 bis 8-fache gestiegene Anlaufstrom belastet insbesondere bei größeren Motoren das Netz und kann bei benachbarten Geräten störende Spannungseinbrüche verursachen. Deshalb sind bei öffentlichen Niederspannungsnetzen (380 V) die Bestimmungen der Elektro-Versorgungs-Unternehmen (EVU) über den Direktanlauf ab Leistungen von 5,5 kW zu beachten.

Ist das Netz für den Direktanlauf nicht geeignet, kann man den Motor mit verminderten Spannungen nach folgenden Methoden starten:

Die Stern-Dreieck-Einschaltung ist die gebräuchlichste, weil kostengünstigste Art, den Einschaltstrom zu verringern.

Dazu ist es erforderlich, dass der Motor im Betrieb im Dreieck geschaltet ist, so dass die Motorwicklungen dann an der Netzspannung (z.B. 400 V) liegen. Während des Anlaufs aber werden die Wicklungen im Stern geschaltet, wodurch die Spannung an den Wicklungen um den Faktor 0,58 gegenüber der Netzspannung verringert wird. Dies vermindert den Anlaufstrom und das -moment auf ein Drittel der Werte bei Direktanlauf mit der Folge, dass der Anlaufvorgang länger dauert. Der Motor läuft nun in der Sternschaltung hoch über das Kippmoment hinaus bis zur höchstmöglichen Drehzahl im Punkt B' in Bild 23. Dann erfolgt die Umschaltung auf die Dreiecksteufe, und der Motor beschleunigt weiter auf die Nenndrehzahl. Während der Umschaltzeit von etwa 0,1 s bleibt der Motor stromlos und die Drehzahl fällt ab. Bei Aggregaten mit kleinem Trägheitsmoment (Spaltrohr- und U-Motoren) kann dieser Drehzahlabfall so groß sein, dass nach dem Umschalten auf die Dreiecksteufe doch wieder der fast ungehinderte Einschaltstrom wie bei der Direkteinschaltung fließt.
Mit einem **Anlasstransformator** wird ebenfalls die Spannung an den Motorwicklungen verringert, jedoch ist der Grad der Absenkung im Gegensatz zur Stern-Dreieck-Schaltung wählbar. Z.B. sinken das Anfahrmoment und der Netzstrom bei einer 70%igen Anzapfung des Transformators auf 49% der Werte bei direkter Einschaltung. Von Vorteil ist auch, dass bei der Umschaltung keine stromlose Phase auftritt.

Beim **Softstarter** wird die Spannung an den Motorwicklungen nach dem Dimmerprinzip stufenlos elektronisch verändert. Dadurch ist eine beliebige Anpassung von Anfahrzeit und Anlaufstrom im Rahmen der zulässigen Betriebsgrenzen des Motors (Verlustwärme durch Schlupf!) möglich. Außerdem sind hier besondere Grenzen für die Schaltzahlen (im Gegensatz zu Tabelle 10) zu beachten [1].

Beim Einsatz von **Frequenzumrichtern** (in der Regel für Stell- oder Regelbetrieb) kann ein sanfter Anlauf ohne Zusatzaufwand verwirklicht werden. Dazu werden die Ausgangsfrequenz und -spannung des Frequenzumrichters (siehe Abschnitt 3.4.3) kontinuierlich von einem Minimalwert auf den gewünschten Wert hochgefahren. Der Nennstrom des Motors wird dabei nicht überschritten.

Bild 23: Anlaufkurve für Strom I und Drehmoment T von Kurzschlussläufern bei Stern-Dreieck-Schaltung.
(γ = Stern-Schaltung; Δ = Dreieck-Schaltung; P = Pumpe)
3.4 Betriebsverhalten und Regelung [4],[6],[8]

3.4.1 Betriebspunkt

Beim Betrieb einer Kreiselpumpenanlage ergibt sich der Betriebspunkt durch den Schnittpunkt der Pumpenkennlinie (siehe unter 3.1.6) mit der Anlagenkennlinie (siehe unter 3.2.2). Dadurch werden der Förderstrom Q und die Förderhöhe H bestimmt. Eine Änderung dieses Betriebspunktes erfordert die Veränderung entweder der Anlagenkennlinie oder der Pumpenkennlinie.

Eine Anlagenkennlinie kann bei der Förderung von Wasser nur verändert werden
- durch Änderung der Strömungswiderstände (z.B. durch Verstellen eines Drosselorgans, durch Einbau einer Lochblende oder einer Bypassleitung, durch Umbau oder Inkrustierung der Rohrleitungen) oder aber
- durch Veränderung des statischen Förderhöhenanteils (z.B. durch eine andere Höhe des Wasserspiegels oder des Behälterdruckes).

Eine Pumpenkennlinie kann verändert werden
- durch eine Verstellung der Drehzahl (siehe unter 3.4.3),
- durch Hinzuschalten oder Abschalten einer parallel oder in Serie betriebenen Pumpe (siehe unter 3.4.4 oder 3.4.5),
- bei Pumpen mit radialen Laufrädern durch Verändern ihres Außendurchmessers (siehe unter 3.4.6),
- bei Pumpen mit halbaxialen Laufrädern (Schaubenrädern) durch Vorschalten bzw. Verstellen eines Vordrallreglers (siehe unter 3.4.8),
- bei Propellerpumpen durch Verstellen des Einstellwinkels der Propellerschaufeln (siehe unter 3.4.9).

Hinweis: Die Wirkungen dieser Maßnahmen zur Kennlinienänderung können nur für kavitationsfreien Betrieb vorausgesagt werden (siehe unter 3.5).

3.4.2 Förderstromregelung durch Drosseln

Die Änderung des Förderstromes Q durch Verstellen einer Drosselarmatur ist zwar die einfachste Methode sowohl für die einmalige Anpassung als auch für die ständige Regelung, da sie die geringsten Investitionen erfordert, zugleich ist sie aber auch die energieunfreundlichsste, weil sie Strömungsenergie irreversibel in Wärmeenergie überführt.

Bild 24 veranschaulicht diesen Vorgang: Durch gezieltes Vergrößern der Anlagenwider-
lochblende und deren drosselbeiwerte f

bild 25: lochblende und deren drosselbeiwerte f

stande (z.B. durch eindrosseln einer armatur auf der pumpendruckseite) wird die dadurch veränderte anlagenkennlinie H₁₁ steiler und geht in H₁₂ über. bei konstanter pumpendrehzahl verlagert sich der betriebspunkt B₁ auf der pumpenkennlinie nach B₂ zu kleinerem Förderstrom. die Pumpe erzeugt dabei eine größere Förderhöhe, als für die Anlage erforderlich wäre; dieser Förderhöhenüberschuss wird in der eingedrosselten Armatur abgebaut, wobei die hydraulische Energie irreversibel in Wärmeenergie umgewandelt und mit dem Förderstrom abgeführt wird. Dieser Verlust ist noch akzeptabel, wenn der Regelbereich nur klein oder die Regelung nur selten erforderlich ist. die erzielte Leistungseinsparung ist im unteren Teil des Bildes dargestellt und ist – verglichen mit dem großen Förderhöhenüberschuss – verhältnismäßig bescheiden.

3.4.3 Förderstromregelung durch Drehzahlverstellung

bei verschiedenen Drehzahlen n hat dieselbe Kreiselpumpe verschiedene Kennlinien, die durch das Ähnlichkeitsgesetz (Affinitätsgesetz) miteinander verbunden sind. sind bei der Drehzahl n₁ die Kennlinien H und P über Q bekannt, errechnen sich alle Punkte der Kennlinien bei n nach den folgenden Gleichungen:

Q₂ = Q₁ · n₂/n₁
H₂ = H₁ · (n₂/n₁)²
P₂ = P₁ · (n₂/n₁)³

Gleichung (23) gilt nur solange, wie sich der Wirkungsgrad η nicht mit abnehmender Drehzahl n vermindert. mit Änderung der Drehzahl verschiebt sich auch der Betriebspunkt

mit
dₘₐ Bohrungsdurchmesser der lochblende in mm,
f Drosselbeiwert nach Bild 25,
Q Förderstrom in m³/h,
g Fallbeschleunigung 9,81 m/s²,
ΔH abzudrosselnde Differenz der Förderhöhe H in m.

Da das Öffnungsverhältnis (dₘₐ/d)² vorab geschätzt werden muss, ist eine Iteration bei diesem Rechenverfahren nötig (zweckmäßig ist eine graphische Auftragung über dem geschätzten Bohrungsdurchmesser dₘₐ, so dass nach zwei Iterationen zielgenau interpoliert werden kann, siehe Rechenbeispiel 8.20).

3.4.3 Förderstromregelung durch Drehzahlverstellung

Bei verschiedenen Drehzahlen n hat dieselbe Kreiselpumpe verschiedene Kennlinien, die durch das Ähnlichkeitsgesetz (Affinitätsgesetz) miteinander verbunden sind. Sind bei der Drehzahl n₁ die Kennlinien H und P über Q bekannt, errechnen sich alle Punkte der Kennlinien bei n₂ nach den folgenden Gleichungen:

Q₂ = Q₁ · n₂/n₁
H₂ = H₁ · (n₂/n₁)²
P₂ = P₁ · (n₂/n₁)³

Gleichung (23) gilt nur solange, wie sich der Wirkungsgrad η nicht mit abnehmender Drehzahl n vermindert. Mit Änderung der Drehzahl verschiebt sich auch der Betriebspunkt

mit
dₘₐ Bohrungsdurchmesser der lochblende in mm,
f Drosselbeiwert nach Bild 25,
Q Förderstrom in m³/h,
g Fallbeschleunigung 9,81 m/s²,
ΔH abzudrosselnde Differenz der Förderhöhe H in m.

Da das Öffnungsverhältnis (dₘₐ/d)² vorab geschätzt werden muss, ist eine Iteration bei diesem Rechenverfahren nötig (zweckmäßig ist eine graphische Auftragung über dem geschätzten Bohrungsdurchmesser dₘₐ, so dass nach zwei Iterationen zielgenau interpoliert werden kann, siehe Rechenbeispiel 8.20).

3.4.3 Förderstromregelung durch Drehzahlverstellung

Bei verschiedenen Drehzahlen n hat dieselbe Kreiselpumpe verschiedene Kennlinien, die durch das Ähnlichkeitsgesetz (Affinitätsgesetz) miteinander verbunden sind. Sind bei der Drehzahl n₁ die Kennlinien H und P über Q bekannt, errechnen sich alle Punkte der Kennlinien bei n₂ nach den folgenden Gleichungen:

Q₂ = Q₁ · n₂/n₁
H₂ = H₁ · (n₂/n₁)²
P₂ = P₁ · (n₂/n₁)³

Gleichung (23) gilt nur solange, wie sich der Wirkungsgrad η nicht mit abnehmender Drehzahl n vermindert. Mit Änderung der Drehzahl verschiebt sich auch der Betriebspunkt

mit
dₘₐ Bohrungsdurchmesser der lochblende in mm,
f Drosselbeiwert nach Bild 25,
Q Förderstrom in m³/h,
g Fallbeschleunigung 9,81 m/s²,
ΔH abzudrosselnde Differenz der Förderhöhe H in m.

Da das Öffnungsverhältnis (dₘₐ/d)² vorab geschätzt werden muss, ist eine Iteration bei diesem Rechenverfahren nötig (zweckmäßig ist eine graphische Auftragung über dem geschätzten Bohrungsdurchmesser dₘₐ, so dass nach zwei Iterationen zielgenau interpoliert werden kann, siehe Rechenbeispiel 8.20).
(siehe unter 3.4.1). Bild 26 zeigt für mehrere Drehzahlen QH-Kurven, die je einen Schnittpunkt mit der Anlagenkennlinie H_{A1} besitzen. Der Betriebspunkt B wandert auf dieser Anlagenkennlinie zu kleineren Förderströmen, wenn die Drehzahl entsprechend verkleinert wird.

Sofern die Anlagenkennlinie wie im Beispiel H_{A1} eine Ursprungsparabel ist, fällt die Förderhöhe H nach Gleichung 22 bei Halbierung der Drehzahl auf ein Viertel, die Antriebsleistung P nach Gleichung 23 auf ein Achtel der Ausgangswerte. Der untere Teil des Bildes 26 zeigt das Ausmaß der Einsparung \Delta P_1 im Vergleich zur Drosselung.

Ist die Anlagenkennlinie im Beispiel H_{A2} dagegen eine Parabel mit großem statischen Anteil H_{A2 stat}, so muss beachtet werden, dass sie mit der Pumpenkennlinie bei abgesenkt der Drehzahl unter Umständen keinen Schnittpunkt, also keinen Betriebspunkt mehr liefert; die unteren Bereiche der Drehzahlverstellung sind hier also nutzlos und können eingespart werden. Die möglichen Leistungseinsparungen \Delta P_2 sind in diesem Falle bei gleichen Förderströmen Q geringer als bei der Anlagenkennlinie H_{A1}, wie der untere Teil des Diagrammes zeigt [4]. Der Leistungsgewinn gegenüber der Drosselung ist umso geringer, je größer der statische Anteil H_{A stat} (also je kleiner der dynamische Anteil H_{A dyn}) ist.

Drehzahländerung bedeutet meistens Frequenzänderung, was bei der Auswahl der Antriebsmotoren beachtet werden muss. Der Aufwand dafür ist nicht gering, amortisiert sich aber bald bei Pumpen, die häufig in Betrieb sind und bei kleinem H_{A stat} oft auf Teillast geregelt werden [8]. Dieses gilt besonders für Pumpen in Heizungsanlagen.

3.4.4 Parallelbetrieb von Kreiselpumpen

Für den Fall, dass der benötigte Anlagenförderstrom Q im Betriebspunkt nicht mit einer Pumpe erreicht werden kann, ist es möglich, zwei oder mehrere Pumpen parallel über je ein Rückschlagorgan in die gemeinsame Druckleitung fördern zu lassen (Bild 27). Die Betriebsweise von parallelgeschalteten Pumpen ist einfacher, wenn deren Nullförderhöhe H_0 untereinander gleich groß ist, was bei identischen Pumpen immer gewährleistet ist. Sind die Nullförderhöhen H_0 dagegen nicht einander gleich, so gibt die niedriger liegende Nullförderhöhe auf der gemeinsamen QH-Kennlinie immer den Mindestförderstrom Q_{min} an, bis zu dem ein Parallelbetrieb nicht möglich ist, weil in diesem Betriebsbereich das
Rückschlagorgan der Pumpe mit kleinerem \(H_0 \) von der größeren Förderhöhe der anderen Pumpe zugedrückt wird.

Bei solchem Parallelbetrieb muss aber beachtet werden, dass nach dem Abschalten einer von zwei gleichen Kreiselpumpen (Bild 27) der Förderstrom \(Q_{\text{einzeln}} \) der weiterlaufenden Pumpe nicht auf die Hälfte von \(Q_{\text{parallel}} \) zurückgeht, sondern größer als die Hälfte bleibt. Diese Pumpe fährt dann sofort unter Umständen im Überlastbereich im Betriebspunkt \(B_{\text{einzeln}} \) was bei der Überprüfung der NPSH-Werte (siehe unter 3.5) und der Antriebsleistung (siehe unter 3.1.3) berücksichtigt werden muss. Der Grund für dieses Verhalten liegt im parabolischen Verlauf der Anlagenkennlinie \(H_A \). Aus dem gleichen Grund verdoppelt beim umgekehrten Vorgang das Hin- und Herbewegen der Pumpe nicht den Förderstrom \(Q_{\text{einzeln}} \) der bereits laufenden Pumpe, sondern vergrößert ihn nur auf weniger als das Doppelte, also

\[
Q_{\text{parallel}} < 2 \cdot Q_{\text{einzeln}} \quad (24)
\]

Dieser Effekt beim Ab- oder Hinzuschalten ist umso stärker, je steiler die Anlagenkennlinie oder je flacher die Pumpenkennlinie ist. Solange aber beide Pumpen I und II laufen, ist der Gesamtförderstrom \(Q_{\text{parallel}} \) immer die Summe von \(Q_I \) und \(Q_{\text{II}} \) (siehe Bild 27), also

\[
Q_{\text{parallel}} = Q_I + Q_{\text{II}} \quad (25)
\]

Zur Berechnung der Kennlinien bei Parallelbetrieb siehe 3.3.1.

Das Hinzuschalten einzelner parallelbetriebener Pumpen ist zwar energiesparend, erlaubt aber nur eine stufenweise Förderstromregelung. Zur stufenlosen Regelung muss deswegen beispielsweise mindestens eine der beiden Pumpen mit einer Drehzahlverstellung oder die gemeinsame Druckleitung mit einer Drosselarmatur ausgerüstet werden [4].

Wenn Kreiselpumpen mit starken Drehzahlen und instabiler Kennlinie (siehe Bild 7 unter 3.1.6) parallel betrieben werden sollen, kann es beim Hinzuschalten einer solchen Pumpe zu Problemen kommen, falls die Betriebsförderhöhe \(H_1 \) der laufenden Pumpe größer ist als die Nullpunktförderhöhe \(H_0 \) (das ist die Förderhöhe bei \(Q = 0 \)) der zuzuschaltenden Pumpe; diese ist dann nicht in der Lage, den Gegendruck, der auf ihrer Rückschlagklappe liegt, zu überwinden (Bild 28, Anlagenkennlinie \(H_{A1} \)). Pumpen mit stabilen Kennlinien sind für einen derartigen Teillastbetrieb nicht geeignet. (Bei einer tiefer liegenden Anlagenkennlinie \(H_{A2} \) würden sie aber einwandfrei zuzuschalten sein, weil jetzt die Betriebsförderhöhe \(H_2 \) der laufenden Pumpe niedriger ist als die Nullpunktförderhöhe \(H_0 \) der zuzuschaltenden Pumpe).
3.4.5 Serienbetrieb (Hintereinanderschaltung)

Beim Serienbetrieb (Reihenbetrieb) sind die Pumpen hintereinandergeschaltet, so dass sich die Förderhöhen der laufenden Pumpen bei gleichem Förderstrom addieren. Dabei ist aber zu beachten, dass der Enddruck der ersten Pumpe zugleich der Zulaufdruck der folgenden Pumpe ist, was bei Bemessung ihrer Wellendich tung und ihrer Gehäusefestigkeit berücksichtigt werden muss. Deswegen wird ein solcher Bedarf im allgemeinen (nicht beim hydraulischen Feststofftransport, siehe Abschnitt 6) durch mehrstufige Pumpen gedeckt, bei denen sich das oben genannte Wellendich tungsproblem nicht stellt.

3.4.6 Abdrehen von Laufrädern

Soll die Förderleistung einer radialen oder halbaxialen Kreiselpumpe bei konstanter Drehzahl bleiben verringert werden, muss ihr Laufradaußendurchmesser D verkleinert werden; dabei soll die maximale Durchmesserverkleinerung so begrenzt werden, dass sich die Schaufeln bei radialer Blickrichtung noch gegenseitig überdecken. In den Kennlinienblättern (Bild 18) sind die Pumpenkennlinien in der Regel für mehrere Abdrehdurch messer D (in mm) dargestellt.

Laufräder aus harten Werkstoffen, wie sie für den hydraulischen Feststofftransport verwendet werden, oder aus Edelstahlblech sowie Einschaufelräder (Bild 43) und Stern- und Peripheralrädern (Bild 4) können nicht abgedreht werden (gleiches gilt auch für das Hinter feilen nach Abschnitt 3.4.7). In mehrstufigen Pumpen werden in der Regel nur die Schaufeln, nicht aber die Radseitenwände der Laufräder abgedreht; man spricht hier vom Ausdrehen statt Abdrehen. Unter Umständen können bei einer mehrstufigen Pumpe anstelle des Ausdrehens das Lau- und das Leitrad einer der Stufen ausgebaut und durch eine sogenannte Blindstufe (das sind zwei konzentrische zylindrische Hülsen zur Strömungsführung) ersetzt werden. Laufräder mit nicht zylindrischem Austritt werden nach Angaben in den Kennlinienblättern ab- oder ausgedreht (z.B. wie in Bild 29).

Wenn der Durchmesser nur geringfügig verkleinert werden soll, lässt er sich mit einer Faustformel berechnen. Eine exakte Berechnung ist dagegen nicht möglich, weil geometrische Ähnlichkeit hinsichtlich der Schaufelwinkel und der Austrittsbreiten beim Abdrehen von Laufrädern nicht mehr gewährleistet werden kann. Für den Zusammenhang zwischen Q, H und dem (ggfs. zu mittelnden) Laufradaußendurchmesser D gilt die folgende Faustformel (Index t = Zustand vor der Reduzierung des Laufradaußendurchmessers, Index r = Zustand nach der Reduzierung):

$$(D_t/D_r)^2 = Q_t/Q_r = H_t/H_r$$ \(26\)

woraus sich zur Bestimmung des (gemittelten) Abdrehdurchmessers ergibt:

$$D_r = D_t \cdot \sqrt{(Q_t/Q_r)} = D_t \cdot \sqrt{(H_t/H_r)}$$ \(27\)

Die Daten zur Bestimmung des Abdrehdurchmessers können nach Bild 30 ermittelt werden, indem man im QH-Diagramm (mit linearer Teilung!) durch den gewünschten neuen Betriebspunkt B r eine Ursprungsgerade zieht (Achtung bei Kennlinien mit unterdrücktem Nullpunkt!), die die vorhandene Kennlinie für den vollen Laufraddurchmesser D t in B t schneidet. Dabei erhält man die Wertepaare für Q und H mit den Indices t und r, die mit der Gleichung (27) den ungefähren gewünschten Abdrehdurchmesser D r ergeben.

Das Verfahren nach ISO 9906 ist etwas genauer, aber auch umständlicher durch Einbeziehung des (gemittelten) Durchmessers D 1 der Laufradeintrittskante (Index 1), gültig für n 1 < 79 und bis zu einer Durchmesserreduzierung um < 5%, solange der Schaufelwinkel und die Laufradbreite konstant bleiben. Dann gilt (mit den Bezeichnungen nach den Bildern 29 und 30):
Eine Lösung ist hier nur möglich, wenn D_1 bekannt ist und wenn durch den reduzierten Betriebspunkt B_r (mit H_r und Q_r) nicht wie in Bild 30 eine Gerade, sondern eine Parabel $H = Q^2$ gelegt wird, die die für D_t geltende QH-Linie in einem anderen Punkt B_t (mit anderen H_t und Q_t) schneidet.

$$(D_t^2-D_1^2)/(D_t^2-D_r^2) = H_r/H_t = (Q_r/Q_t)^2$$

(28)

3.4.7 Hinterfeilen von Laufradschaufeln

Eine geringfügige, bleibende Vergrößerung der Pumpenförderhöhe im Bestpunkt (bis zu 4–6%) kann man bei radialen Laufrädern durch das Hinterfeilen der rückwärts gekrümmten Beschauflung, also das Anschärfen der Laufradschaufelenden auf der konkaven Seite, erreichen (Bild 31); die Förderhöhe bei $Q = 0$ bleibt dabei unverän-

dert. Diese Methode ist für letzte Nachbesserungen geeignet.

3.4.8 Förderstromregelung mittels Vordrall

3.4.9 Förderstromregelung/-änderung durch Schaufelverstellung

Die Kennlinien von Propellerpumpen lassen sich durch Verstellen der Propellerschaufeln
verändern. Diese Einstellung kann fest verschraubt sein oder mittels eines Verstellgetriebes im Betrieb zur Förderstromregelung benutzt werden. In den Kennlinienblättern sind die Einstellwinkel bei den verschiedenen Kennlinien eingetragen (Bild 33).

3.4.10 Förderstromregelung mittels Bypass

Die Anlagenkennlinie kann durch Drosseln einer Armatur steiler gemacht werden, sie kann aber auch durch Öffnen eines Bypasses in der Druckleitung flacher gemacht werden, siehe Bild 34. Der Betriebspunkt verschiebt sich in diesem Falle von B_1 zum größeren Förderstrom bei B_2; der regelbare Bypassförderstrom kann wieder in den Saugbehälter zurückgeführt werden, wird also nicht genutzt. Diese Art der Förderstromregelung ist aus energetischen Gesichtspunkten nur dann sinnvoll, wenn die Leistungskennlinie mit steigendem Förderstrom abfällt, was bei großen spezifischen Drehzahlen (bei Schraubenrädern oder Propellern) der Fall ist ($P_1 > P_2$). Mit der Vordrall- oder Schaufelverstellung gibt es aber in diesem Bereich Regelungsmöglichkeiten, die noch wirtschaftlicher arbeiten. Der Aufwand für Bypass und Regelarmatur ist nicht gering [4]. Diese Methode ist auch zum Schutz von Pumpen gegen Betrieb in unzulässigen Teillastbereichen (siehe Betriebsgrenzen in den Bildern 5 und 6c sowie 32 und 33) geeignet.

Bild 33: Kennfeld einer Axialpumpe mit Laufschaufelverstellung, $n_q = 200$

Bild 34: Kennlinien und Betriebspunkte einer Pumpe mit fallender Leistungskennlinie bei der Förderstromregelung mittels Bypass (bei einer Pumpe mit radialem Laufrad würde die Leistungskennlinie nach rechts ansteigen und diese Art der Regelung eine Mehrleistung verursachen, s. Bild 5)
3.5 Saug- und Zulaufverhältnisse [3]
(NPSH = Net Positive Suction Head)

3.5.1 NPSH-Wert der Anlage $NPSH_{vorb}$

Der $NPSH_{vorb}$-Wert ist die vorhandene Druckdifferenz zwischen dem Gesamtdruck in der Mitte des Pumpeneinlaufstutzens und dem Verdampfungsdruck p_D (auch Sättigungsdruck genannt), gemessen als Druckhöhendifferenz in m. Er ist gewissermaßen ein Maß für die Verdampfungsgefahr an dieser Stelle und wird nur durch die Daten der Anlage und der Förderflüssigkeit bestimmt.

Die Verdampfungsdrücke von Wasser und anderen Flüssigkeiten sind in Tabelle 12 und in Bild 35 als Funktion der Temperatur dargestellt.

Bild 35: Verdampfungsdruck p_D verschiedener Flüssigkeiten als Funktion der Temperatur t (vergrößerte Darstellung siehe Seite 88)
Tabelle 12: Verdampfungsdruck p_D, Dichte ρ und kinematische Viskosität ν des Wassers bei Sättigung als Funktion der Temperatur t.

<table>
<thead>
<tr>
<th>$t , ^\circ C$</th>
<th>p_D , bar</th>
<th>$\rho , \text{kg/m}^3$</th>
<th>$\nu , \text{mm}^2/\text{s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,00611</td>
<td>999,8</td>
<td>1,792</td>
</tr>
<tr>
<td>1</td>
<td>0,00656</td>
<td>999,9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,00705</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,00737</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,00816</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,00872</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,00935</td>
<td>999,9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,01010</td>
<td>999,9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,01072</td>
<td>999,8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,01146</td>
<td>999,7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,01227</td>
<td>999,6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,01311</td>
<td>999,5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,01401</td>
<td>999,4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,01496</td>
<td>999,3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,01597</td>
<td>999,2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,01703</td>
<td>999,0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0,01816</td>
<td>998,8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0,02017</td>
<td>998,6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0,02734</td>
<td>997,8</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0,02916</td>
<td>997,6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0,03237</td>
<td>997,2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0,03485</td>
<td>997,0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0,03641</td>
<td>996,7</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0,03564</td>
<td>996,4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0,03779</td>
<td>996,1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0,04004</td>
<td>995,8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0,04241</td>
<td>995,6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0,04491</td>
<td>995,2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0,04753</td>
<td>994,9</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0,05029</td>
<td>994,6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,05318</td>
<td>994,3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0,05622</td>
<td>993,9</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0,05940</td>
<td>993,5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0,06274</td>
<td>993,2</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0,06624</td>
<td>992,9</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0,06991</td>
<td>992,6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0,07375</td>
<td>992,2</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0,07777</td>
<td>991,8</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0,08198</td>
<td>991,4</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0,08639</td>
<td>991,0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0,09100</td>
<td>990,6</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0,09582</td>
<td>990,2</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0,10085</td>
<td>989,8</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0,10612</td>
<td>989,3</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0,11162</td>
<td>988,9</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0,11736</td>
<td>988,5</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>0,12335</td>
<td>988,0</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0,12960</td>
<td>987,7</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0,13613</td>
<td>987,2</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0,15002</td>
<td>986,2</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0,15741</td>
<td>985,7</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0,16509</td>
<td>985,2</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0,17312</td>
<td>984,7</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0,18166</td>
<td>984,3</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0,19015</td>
<td>983,7</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0,19920</td>
<td>983,2</td>
<td></td>
</tr>
</tbody>
</table>

NPSH der Anlage · Daten von Wasser

Dichte ρ von Meerwasser $\rho = 100 \div 1040 \, \text{kg/m}^3$
3.5.1.1 NPSH\(_{\text{vorh}}\) bei Saugbetrieb

Bei Saugbetrieb (Bild 8) ist die Pumpe oberhalb des saugseitigen Flüssigkeitsspiegels aufgestellt. Der NPSH\(_{\text{vorh}}\)-Wert kann aus den Zustandsdaten im Saugbehälter (Index e) wie folgt berechnet werden (siehe Bild 36):

\[
\text{NPSH}_{\text{vorh}} = \left(p_e + p_b - p_D \right) \left(\frac{\varrho \cdot g}{\rho} \right) + v_e^2/2 g - H_{v,s} - H_{s,\text{geo}} \pm s' \tag{29}
\]

mit

- \(p_e\): Überdruck im Saugbehälter in N/m\(^2\),
- \(p_b\): Luftdruck in N/m\(^2\) (Tabelle 13: Höheneinfluss beachten!),
- \(p_D\): Verdampfungsdruck in N/m\(^2\) (in Tabelle 12 absoluter Druck!),
- \(\varrho\): Dichte in kg/m\(^3\),
- \(g\): Fallbeschleunigung 9,81 m/s\(^2\),
- \(v_e\): Strömungsgeschwindigkeit im Saugbehälter in m/s,
- \(H_{v,s}\): Druckhöhenverlust in der Saugleitung in m,
- \(H_{s,\text{geo}}\): Höhendifferenz zwischen Flüssigkeitsspiegel im Saugbehälter und Mitte Pumpensaugstutzen in m,
- \(s'\): Höhendifferenz zwischen Mitte Pumpensaugstutzen und Mitte Laufradeintritt in m.

Bild 36: Ermittlung von NPSH\(_{\text{vorh}}\) bei Saugbetrieb für horizontal oder vertikal aufgestellte Pumpe

Bei kaltem Wasser und offenem Behälter (Bild 36 links) in Meereshöhe vereinfacht sich diese Formel (mit Einheiten wie oben) für die Praxis genau genug zu

\[
\text{NPSH}_{\text{vorh}} = 10 \cdot H_{v,s} \cdot H_{s,\text{geo}} \pm s' \tag{30}
\]

Die Korrektur durch \(s'\) ist nur nötig, wenn die Mitte des Laufradeintritts (der für die Kavitationsgefahr maßgebend ist) nicht mit der Mitte des Saugstutzens (= Bezugsebene) auf gleicher Höhe liegt. Im Bild 36 muss bei der linken Pumpe daher \(H_{s,\text{geo}}\) um \(s'\) „verlängert“ werden (d.h. gleiche Vorzeichen von \(H_{s,\text{geo}}\) und \(s'\)!. Falls \(s'\) nicht bekannt ist, genügt meistens eine Abschätzung nach dem Maßbild der Pumpe.

Tabelle 13: Einfluss der topographischen Höhe über N.N. auf die Jahresmittelwerte des Luftdrucks und auf die jeweilige Siedetemperatur (1 mbar = 100 Pa)

<table>
<thead>
<tr>
<th>Höhe über N. N. m</th>
<th>Luftdruck (p_b) mbar</th>
<th>Siedetemperatur °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1013</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>989</td>
<td>99</td>
</tr>
<tr>
<td>500</td>
<td>955</td>
<td>98</td>
</tr>
<tr>
<td>1000</td>
<td>899</td>
<td>97</td>
</tr>
<tr>
<td>2000</td>
<td>795</td>
<td>93</td>
</tr>
<tr>
<td>4000</td>
<td>616</td>
<td>87</td>
</tr>
<tr>
<td>6000</td>
<td>472</td>
<td>81</td>
</tr>
</tbody>
</table>
3.5.1.2

NPSH\text{vorh} bei Zulaufbetrieb

Bei Zulaufbetrieb (Bild 9) ist die Pumpe im Gegensatz zu 3.5.1.1 unterhalb des Flüssigkeitsspiegels aufgestellt. Die Gleichungen (29) und (30) verändern sich dann mit $H_{z,\text{geo}}$ anstelle $-H_{s,\text{geo}}$ zu

\begin{equation}
\text{NPSH}_{\text{vorh}} = \frac{(p_e + p_b - p_D)}{(\rho \cdot g)} + \frac{v_e^2}{2g} - H_{\text{v,s}} + H_{z,\text{geo}} \pm s' \tag{31}
\end{equation}

mit $H_{z,\text{geo}}$ Höhendifferenz zwischen Flüssigkeitsspiegel im Zulaufbehälter und Mitte Pumpensaugstutzen in m.

Bei kaltem Wasser und offenen Behälter (Bild 37 links) in Meereshöhe vereinfacht sich auch diese Formel mit Einheiten wie oben (für die Praxis genau genug) zu

\begin{equation}
\text{NPSH}_{\text{vorh}} = 10 - H_{\text{v,s}} + H_{z,\text{geo}} \pm s' \tag{32}
\end{equation}

Die Anmerkungen zu s' gelten sinngemäß wie unter 3.5.1.1.

3.5.2

NPSH-Wert der Pumpe NPSH\text{erf}

Mit abnehmendem Druck bilden sich in der Pumpe die ersten Kavitationsblasen schon lange, bevor die hydraulischen Eigenschaften der Pumpe darauf reagieren. Aus ökonomischen Gründen muss man in der Praxis daher das Auftreten geringfügiger Kavitationsblasen meistens akzeptieren. Dabei kann das für zulässig erachtete Ausmaß der Kavitation mit bestimmten Kriterien definiert werden. Häufig wird ein Förderhöhenabfall der Pumpe von 3% als Folge der Kavitation zugelassen. Bild 38 zeigt die Vorgehensweise bei der Ermittlung: Bei konstantem Förderstrom und konstanter Drehzahl wird das NPSH\text{erf} der Versuchsanlage so weit abgesenkt, bis die Förderhöhe der Pumpe gerade um 3% abgefallen ist. Man kann aber auch den kavitationsbedingten Anstieg des Geräuschpegels oder das Ausmaß eines Materialabtrags oder einen bestimmten Wirkungsgradabfall der Pumpe für die Begrenzung der Kavitation heranziehen. Will man diesen...
Zustand nicht überschreiten, ist ein Mindest-NPSH-Wert erforderlich, der in den NPSH_{erf}-Kurven unter den QH-Kennlinien in der Einheit m angegeben wird (siehe Bild 18). Bezugs Ebene ist dabei die Mitte des Laufradeintritts (Bild 39), die sich z.B. bei vertikalen Pumpen um das Maß s' von der Bezugs Ebene der Anlage unterscheidet (siehe Bilder 36 u. 37).

Um also das somit angegebene Ausmaß der zugelassenen Kavitation nicht zu überschreiten, muss

\[\text{NPSH}_{\text{vorb}} > \text{NPSH}_{\text{erf}} \] \hspace{1cm} (33)

sein. Bild 40 zeigt diesen Sachverhalt graphisch im Schnittpunkt von \text{NPSH}_{\text{vorb}} und \text{NPSH}_{\text{erf}}. Wird diese Voraussetzung nicht beachtet, fällt die Förderhöhe rechts des Schnittpunktes (bei vergrößertem Förderstrom) schnell ab und bildet „Abreißäste“. Ein längerer Betrieb in diesem Zustand beschädigt die Pumpe.

3.5.3 Korrekturmöglichkeiten

Die Zahlenwerte von \text{NPSH}_{\text{vorb}} und \text{NPSH}_{\text{erf}} beruhen auf den konstruktiv festgelegten und nachträglich nicht mehr veränderlichen Abmessungen der Anlage und der Pumpe und auf den Daten des Betriebspunktes. Daraus folgt, dass eine nachträgliche Verbesserung der Bedingung \text{NPSH}_{\text{vorb}} > \text{NPSH}_{\text{erf}} in einer vorhandenen Kreiselpumpenanlage nur mit einem großen konstruktiven und finanziellen Aufwand in der Anlage oder Pumpe möglich ist. Das betrifft z.B. die Vergrößerung von H_{z, \text{geo}} oder die Verminderung von H_{s, \text{geo}} (durch Höherlegen des Behälter).
Inducer

Förderströmgebiet der betreffenden Pumpe gilt, sondern nur für bestimmte Teilbereiche (siehe Bild 42).

Die Beständigkeit gegen Kavitationsverschleiß kann insbesondere bei Pumpen größerer Nennweiten durch die Wahl geeigneter (d.h. auch teurerer) Laufradwerkstoffe erhöht werden. Nur in einem Sonderfall ist die NPSH-Korrektur einfach: Bei geschlossenen Kreisläufen (z.B. in Heizungsanlagen) kann das Druckniveau gegebenenfalls zur Verbesserung von \(\text{NPSH}_{\text{vorb}} \) angehoben werden, sofern die Anlage einen solchen höheren Systemdruck zulässt.

Bild 42: Einfluss eines Inducers (Vorschaltläufers) auf \(\text{NPSH}_{\text{eff}} \)
3.6 Einfluss von Verunreinigungen

Wenn das Wasser (z.B. häusliches Abwasser, Regenwasser oder Mischwasser) nur geringe Verunreinigungen enthält, werden meistens spezielle Laufrad- und Pumpenbauformen (z.B. mit Reinigungsdeckeln, besonderen Wellendichtungen) eingesetzt [1].

Bild 43 zeigt die gängigsten Laufradbauformen für diese Abwäser. Bei der Schlammförderung können Kanalräder bis 3%, Einschaufelräder bis 5%, Freistromräder bis 7% und Schneckenräder noch höhere Anteile an Trockensubstanz bewältigen.

Da Einschaufelräder für die Abwasserförderung zur Anpassung des Betriebspunktes (siehe Abschnitt 3.4.6) nicht abgedreht werden können, werden diese Pumpen oft mittels Keilriemen angetrieben (siehe Bild 59 g).

Zuschläge zu den Antriebsleistungen sind nicht in Bild 20, sondern in der erzeugnis- spezifischen Dokumentation angegeben [1], da sie nicht nur abhängig von der Antriebsleistung, sondern auch von der Laufradform und der spezifischen Drehzahl sind. So werden z.B. für Einschaufelräder bei der Förderung von häuslichen Abwässern und Fäkalien die folgenden Leistungsreserven empfohlen:

<table>
<thead>
<tr>
<th>Leistung in kW</th>
<th>Zuschlag</th>
<th>Leistungsreserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 7,5 kW</td>
<td>ca. 30%</td>
<td>(±1 kW)</td>
</tr>
<tr>
<td>von 11–22 kW</td>
<td>ca. 20%</td>
<td></td>
</tr>
<tr>
<td>von 30–55 kW</td>
<td>ca. 15%</td>
<td></td>
</tr>
<tr>
<td>über 55 kW</td>
<td>ca. 10%</td>
<td></td>
</tr>
</tbody>
</table>

Bei der Ermittlung der Druckhöhenverluste in Rohrleitungen (siehe unter 3.2.1.2) sind besondere Zuschläge erforderlich [1].

Um bei hochbelasteten Abwässern die Gefahr von Verstopfungen in den Rohrleitungen zu vermindern, sollte die Mindestgeschwindigkeit in horizontalen Rohren mit 1,2 m/s und in vertikalen Rohren mit 2 m/s nicht unterschritten werden (genaue Werte sind nur experimentell zu gewinnen!); das ist bei Drehzahlregelungen zu beachten [1].
Besonderheiten bei der Förderung zäher Flüssigkeiten

4.1 Die Fließkurve

Die Zähigkeit (Viskosität) einer Flüssigkeit ist ihre Eigenschaft, Schubspannungen zu übertragen. Bild 44 verdeutlicht diesen Vorgang: In einer Flüssigkeit wird parallel zu einer ebenen Wand im Abstand y_0 eine ebene Platte mit der benetzten Oberfläche A und der Geschwindigkeit v_0 bewegt. Dabei muss eine Reibungskraft F überwunden werden, die man zur Schubspannung $\tau = F/A$ umrechnen kann. Wird der Wandabstand y_0 oder die Geschwindigkeit v_0 oder die Art der trennenden Flüssigkeit verändert, so beeinflusst dieses die Schubspannung τ proportional zur Geschwindigkeit v_0 oder umgekehrt proportional zum Wandabstand y_0. Die beiden einfach zu erkennenden Parameter v_0 und y_0 fasst man zum Begriff Schergefälle v_0/y_0 zusammen.

Da die Zähigkeit der Flüssigkeit die Schubspannung τ nicht nur an den Wänden, sondern auch in allen anderen Wandabständen, also zwischen den Flüssigkeitsflecken überträgt, definiert man verallgemeinert das Schergefälle als $\partial v/\partial y$ (Geschwindigkeitsgefälle pro Änderung des Wandabstandes); es ist ebenso wie die Schubspannung τ nicht für alle Wandabstände y gleich groß, sondern es gibt bei einer Messreihe Wertepaare τ und $\partial v/\partial y$, die als Funktion in der so genannten Fließkurve aufgetragen werden können (Bild 45).

Die beiden einfach zu erkennenden Parameter v_0 und y_0 fasst man zum Begriff Schergefälle v_0/y_0 zusammen.

Da die Zähigkeit der Flüssigkeit die Schubspannung τ nicht nur an den Wänden, sondern auch in allen anderen Wandabständen, also zwischen den Flüssigkeitsflecken überträgt, definiert man verallgemeinert das Schergefälle als $\partial v/\partial y$ (Geschwindigkeitsgefälle pro Änderung des Wandabstandes); es ist ebenso wie die Schubspannung τ nicht für alle Wandabstände y gleich groß, sondern es gibt bei einer Messreihe Wertepaare τ und $\partial v/\partial y$, die als Funktion in der so genannten Fließkurve aufgetragen werden können (Bild 45).

Ist diese Fließkurve eine Ursprungserade

$$\tau = \eta \cdot \partial v/\partial y \quad (34)$$

so nennt man den konstanten Proportionalitätsfaktor η die dynamische Zähigkeit mit der Einheit Pa s. Eine derart gekennzeichnete Flüssigkeit (z. B. Wasser oder alle Mineralöle) ist eine normalviskose oder NEWTONsche Flüssigkeit, für die die Gesetze der Hydrodynamik uneingeschränkt gelten. Ist die Fließkurve dagegen keine Ursprungserade, sondern eine beliebig verlaufende Kurve, dann handelt es sich um eine nichtNEWTONsche Flüssigkeit, für die die hydrodynamischen Gesetze nur unter Einschrän-
Besonderheiten bei zähen Flüssigkeiten

kungen gelten. Beide Fälle müssen daher grundsätzlich unterschieden werden.

Da in vielen Beziehungen der Quotient aus dynamischer Zähigkeit \(\eta \) und der Dichte \(\varrho \) vorkommt, hat man ihn als kinematische Zähigkeit

\[
\nu = \frac{\eta}{\varrho}
\]

mit

\(\nu \) kinematische Zähigkeit in \(\text{m}^2/\text{s} \),
\(\eta \) dynamische Zähigkeit in \(\text{Pa} \cdot \text{s} \) (= \(\text{kg}/\text{sm} \)),
\(\varrho \) Dichte in \(\text{kg}/\text{m}^3 \) (Zahlenwerte siehe Bild 48).

definiert. Für Wasser mit 20 °C ist \(\nu = 1,00 \cdot 10^{-6} \text{ m}^2/\text{s} \). Weitere Zahlenwerte siehe Tabelle 1.

Die früher gebräuchlichen Einheiten Centistokes = \(\text{mm}^2/\text{s} \), Englergrad °E, Saybolt-Sekunden S'' (USA) oder Redwood-Sekunden R'' (England) sind heute nicht mehr zugelassen und können mittels Bild 46 umgerechnet werden auf \(\text{m}^2/\text{s} \).

Die Zähigkeit hängt (unabhängig von der obigen Erläuterung) von der Temperatur ab: Mit steigender Temperatur werden fast alle Flüssigkeiten dünnflüssiger, ihre Zähigkeit nimmt ab (Bilder 47 und 48).

Die dynamische Zähigkeit \(\eta \) kann für alle Flüssigkeiten zur Aufzeichnung der Fließkurve mit einem Rotationsviskosimeter gemessen werden: In einem mit der Prüfflüssigkeit ge-
füllten zylindrischen Topf rotiert ein Zylinder mit frei wählbarer Drehzahl. Gemessen werden bei mehreren Drehzahlen das Antriebsmoment, die Umfangsgeschwindigkeit, die Größe der benetzten Zylinderfläche und der Wandabstand im Topf.

4.2 Newtonsche Flüssigkeiten

4.2.1 Einfluss auf die Pumpenkennlinien

Die Kennlinien der Kreiselpumpen (H, η und P über Q) zeigen erst ab einer kinematischen Zähigkeit ν > 20 · 10⁻⁵ m²/s spürbare Einflüsse und müssen erst ab dieser Grenze mit empirisch ermittelten Umrechnungsfaktoren umgerechnet werden. Die beiden bekanntesten Verfahren sind die nach Standards of the Hydraulic Institute (HI) und nach KSB. Beide Verfahren benutzen zur Darstellung der Umrechnungsfaktoren Diagramme, die zwar in ähnlicher Weise gehandhabt werden, die sich aber darin unterscheiden, dass im KSB-Verfahren außer den Einflussgrößen Q, H und ν auch noch zusätzlich der deutliche Einfluss der spezifischen Drehzahl n_q (siehe Abschnitt 3.1.5) enthalten ist. Das HI-Verfahren (Bild 49) wurde nur bei n_q = 15 bis 20 gemessen und führt in diesem engen Anwendungsbereich zu zahlengleichen Ergebnissen wie das KSB-Verfahren (Bild 50), das im n_q-Bereich von 6,5 bis 45 und bei Zähigkeiten bis ν_z = 4000 · 10⁻⁶ m²/s gemessen wurde. Die Benutzung beider Diagramme ist durch eingezeichnete Beispiele erläutert [9].

Der Förderstrom Q, die Förderhöhe H und der Wirkungsgrad η einer einstufigen Kreiselpumpe, die für einen Wasserbetrieb (Index w) bekannt sind, lassen sich nun für den Betrieb mit einer zähen Flüssigkeit (Index z) wie folgt umrechnen:

\[Q_z = f_Q \cdot Q_w \] (36)
\[H_z = f_H \cdot H_w \] (37)
\[\eta_z = f_\eta \cdot \eta_w \] (38)

Die Faktoren f werden im HI-Verfahren k genannt; beide sind in den Bildern 49 und 50 graphisch aufgetragen; in Bild 50 muss zusätzlich die Pumpendrehzahl n_q eingelesen werden und die spezifische Drehzahl n_z des Pumpenlaufrades bekannt sein, z.B. nach Bild 3 oder nach Gleichung 3.
Bild 49: Ermittlung der Korrekturfaktoren k nach Standards of Hydraulic Institute. Eingetragenes Beispiel für $Q = 200 \text{ m}^3/\text{h}$, $H = 57,5 \text{ m}$, $v = 500 \cdot 10^{-6} \text{ m}^2/\text{s}$
Bild 50: Ermittlung der Korrekturfaktoren \(f \) nach dem KSB-Verfahren. Eingetragenes Beispiel für
\(Q = 200 \text{ m}^3/\text{h}, \quad H = 57,5 \text{ m}, \quad v = 500 \cdot 10^{-6} \text{ m}^2/\text{s}, \quad n = 2900 \text{ min}^{-1}, \quad n_q = 32,8 \)
Mit diesen Faktoren können dann die für Wasserbetrieb bekannten Betriebsdaten für zähe Flüssigkeiten umgerechnet werden; die Umrechnung gilt im Lastbereich

\[0,8 \, Q_{opt} < Q < 1,2 \, Q_{opt} \quad (39) \]

vereinfacht also bei drei Förderströmen 0,8 und 1,0 und 1,2 \(Q_{opt} \) mit der einzigen Ausnahme:

Bei \(Q = 0,8 \, Q_{opt} \) ist \(H_z = 1,03 \cdot f_{H1} \cdot H_w \) (\(H_z \) aber nie > \(H_w \)).

Beim Förderstrom \(Q = 0 \) ist einfach \(H_z = H_w \) sowie \(\eta_z = \eta_w = 0 \) zu setzen. Ein Rechenschema nach Bild 51 erleichtert die Umrechnung.

Nachdem auch die Leistung bei den drei Förderströmen (im Lastbereich nach Gleichung 39) berechnet wurde gemäß

\[P_z = \rho_z \cdot g \cdot H_z \cdot Q_z / 1000 \, \eta_z \quad (40) \]

mit

- \(\rho_z \) Dichte in kg/m³
- \(Q_z \) Förderstrom in m³/s
- \(g \) Fallbeschleunigung = 9,81 m/s²
- \(H_z \) Förderhöhe in m,
- \(\eta_z \) Wirkungsgrad zwischen 0 und 1,
- \(P_z \) Leistung in kW (!),

können danach alle Kennlinien aus jeweils 4 bzw. 3 berechneten Punkten über \(Q_z \) aufgezeichnet werden, siehe Bild 52, Seite 54.

Sind in der umgekehrten Aufgabenstellung nicht die Wasserwerte, sondern die Daten bei Betrieb mit zäher Flüssigkeit gegeben (z.B. bei der Suche einer geeigneten Pumpe für den geforderten Betriebspunkt), schätzt man zunächst die Wasserwerte und nähert sich dann mit den Umrechnungsfaktoren \(f_Q \), \(f_{H1} \) und \(f_{\eta} \) iterativ in einem zweiten (oder notfalls dritten) Schritt der Lösung.

Oberhalb einer spezifischen Drehzahl \(n_q \) von \(\approx 20 \) führt das besser angepasste KSB-Rechenverfahren zu geringerem Antriebsleistungen, unterhalb dieser Grenze sind die berechneten Antriebsleistungen nach HI zu klein [9]!
4.2.2 Einfluss auf die Anlagennennlinien

Da bei den NEWTONschen Flüssigkeiten alle hydrodynamischen Gesetze ihre Gültigkeit ohne Einschränkung behalten, gelten auch die Berechnungsformeln und Diagramme für die Rohreignungsbeiwerte und für die Verlustbeiwerte in Armaturen weiterhin. Man muss nur bei der Berechnung der REYNOLDS-Zahl \(\text{Re} = \frac{v \cdot d}{\nu} \) anstelle der kinematischen Zähigkeit \(\nu_w \) von Wasser jetzt \(\nu_z \) der jeweiligen zähen Flüssigkeit einsetzen. Damit ergibt sich eine kleinere Re-Zahl und nach Bild 10 folglich ein größerer Rohreignungsbeiwert \(\lambda_z \) (wobei die Einflüsse der Wandrauhig-
keit wegen der jetzt dickeren Grenzschichten in der Strömung außer Acht bleiben können). Mit dem Verhältnis zum Wasserwert \(\lambda_z/\lambda_w \) sind dann alle für die Wasserförderung berechneten Druckverluste in Rohrleitungen und Armaturen nach 3.2.1.2 hochzurechnen.

Für den praktischen Gebrauch ist auch Bild 53 geeignet: In Abhängigkeit vom Förderstrom \(Q \), vom Rohrinnendurchmesser \(d \) und von der kinematischen Zähigkeit \(\nu \) kann hier schnell der Rohreignungsbeiwert \(\lambda_z \) ermittelt werden, während der Beiwert \(\lambda_w \) in diesem Diagramm nur bei hydraulisch glatten Rohren (also nicht bei rauen Rohren) gilt! Mit dem zutreffenden \(\lambda_w \) kann wieder \(\lambda_z/\lambda_w \) berechnet werden.

Da der statische Anteil der Anlagennennlinie \(H_A \) (Bild 16) von der Zähigkeit nicht beeinflusst wird, kann somit der dynamische Anteil der für Wasserbetrieb bekannten Anlagennennlinie als steiler verlaufende Parabel für die zähe Flüssigkeit umgezeichnet werden.

4.3 NichtNEWTONsche Flüssigkeiten

4.3.1 Einfluss auf die Pumpennennlinien

Wegen des örtlich nicht bekannten Schergefälles in den hydraulischen Bauelementen der Pumpe ist eine Berechnung der Zähigkeiteinflüsse auf die Pumpennennlinien bei nichtNEWTONschen Flüssigkeiten nicht möglich. Nur für ganz spe-
4.3.2 Einfluss auf die Anlagenkennlinien

Da die Fließkurven keine Geraden mit konstanter Zähigkeit sind, kann man sich so behelfen, dass man sie in kurze Parabelabschnitte unterteilt und für jeden Abschnitt (zweckmäßigerweise in doppeltlogarithmischer Auftragung) auf graphischem Wege den Parameter (= Steifigkeitszahl) und den Exponenten n (= Strukturzahl) der Parabeln ermittelt. In einem speziellen Diagramm (analog zu Bild 10), in dem der Rohreibungsbeiwert \(\lambda_z \) über der verallgemeinerten REYNOLDS-Zahl \(Re_z \) für mehrere Exponenten n aufgetragen ist, kann dann \(\lambda_z \) abgelesen und für einen bestimmten Förderstrom Q die Anlagenkennlinie \(H_A \) ermittelt werden. Da dieses Verfahren insbesondere wegen der mehrfachen Iterationen aber äußerst umständlich ist, kann es nicht für die allgemeine Anwendung empfohlen werden.

Man greift in diesem Falle wie bei den Pumpenkennlinien auf die besonderen Erfahrungen mit bestimmten Flüssigkeiten zurück und liest in Diagrammen mit engem Anwendungsbereich den Druckhöhenverlust \(H_v \) ab. Bei zunehmenden Abweichungen von diesen Voraussetzungen werden die Druckhöhenverluste immer unsicherer, so dass in solchen Fällen nur die Erfahrung der Fachabteilung weiterhelfen kann.
5. Besonderheiten bei der Förderung gashaltiger Flüssigkeiten

Im Fliehkraftfeld eines Laufrades tendieren die Gasblasen dazu, sich an bestimmten Stellen in der Pumpe anzusammeln und hier die Strömung zu stören. Dieser Effekt wird begünstigt,

- je weiter die Pumpe im Teillastgebiet arbeitet, weil hier wegen der geringeren Strömungsgeschwindigkeiten deren Schleppwirkung nachlässt,
- je kleiner der Laufradeintrittsdurchmesser ist, weil dann die Drosselwirkung durch das Gasvolumen relativ stärker ist,
- je kleiner die spezifische Drehzahl \(n_q \) des Pumpenlaufrades ist,
- je geringer die Drehzahl der Pumpe ist.

Eine rechnerische Erfassung dieser Erscheinung ist nicht möglich. Wenn größere Gasgehalte in der Förderflüssigkeit zu erwarten sind, können die folgenden Maßnahmen nützlich sein:

- Ein genügend großer Ruhebehälter in der Saugleitung ermöglicht eine Entgasung der Flüssigkeit und kann die störenden Einflüsse der ungelösten Gasblasen vermindern.
- Rohrleitungen, die zur Füllung eines offenen Ansaugbehälters dienen, müssen unterhalb des Flüssigkeitsspiegels enden, damit z.B. ein freier Wasserfall keine Luftblasen in den Behälter einspeülen kann; außerdem soll eine Prallwand den Eintritt von Wirbeln in die Saugleitung verhindern (siehe Bilder 64 und 65).
- Ein Teillastbetrieb der Pumpe lässt sich durch Installation einer besonderen Teillastpumpe vermeiden; wenn diese nur zeitweise betrieben werden muss, kann sie vorteilhaft als selbstansaugende Pumpe (mit geringerem Wirkungsgrad) ausgewählt werden.
- Eine Gasabführungsleitung vor der Laufradnabe erfordert eine Absaugevorrichtung, ist bei größerem Gasanteil nur begrenzt leistungsfähig und stört bei normalem Betrieb die Förderung.
• Seitens der Pumpe sind offene Laufräder (siehe Bild 4) mit möglichst wenig Schaufeln vorteilhaft, ähnlich wie das Vorschalten eines Inducers (Bild 41). Ohne besondere Maßnahmen können Kanalräder (Bild 43) bis zu $3\%_{\text{vol}}$ und Freistromräder 6 bis $7\%_{\text{vol}}$ Gasanteile mit fördern.

• Bei planmäßig hohen Gasanteilen arbeiten Seitenkanalpumpen (geringere Wirkungsgrade, stärkere Geräusche, begrenzter Förderstrom) oder Wasserringpumpen (nach dem Verdrängerprinzip) zuverlässiger.
6 Besonderheiten bei der Förderung feststoffhaltiger Flüssigkeiten

6.1 Sinkgeschwindigkeit

Feststoffe (schwerer als Wasser) lassen sich um so besser fördern, je geringer ihre Sinkgeschwindigkeit und um so größer ihre Strömungsgeschwindigkeit ist. Wegen der vielen Einflussgrößen ist aber die Berechnung der Sinkgeschwindigkeit nur unter abstrahierenden Annahmen möglich: Die Sinkgeschwindigkeit einer einzelnen Kugel im unbegrenzten Raum (Index 0) folgt aus dem Kräftegleichgewicht zu

\[w_{s0} = \sqrt{\frac{4 \cdot g \cdot d_s}{3 \cdot c_D} \cdot \frac{\rho_s - \rho_f}{\rho_f}} \] (41)

mit

- \(w_{s0} \): Sinkgeschwindigkeit in m/s,
- \(g \): Fallbeschleunigung 9,81 m/s²,
- \(d_s \): Kugeldurchmesser in m,
- \(c_D \): Widerstandsbeiwert der Kugel abhängig von \(\text{Re}_s \),
- \(\rho_s \): Dichte d. Feststoffes in kg/m³,
- \(\rho_f \): Dichte d. Flüssigkeit in kg/m³.

\[\text{Re}_s = w_{s0} \cdot d_s/\nu_f \] (42)

mit

- \(\nu_f \): kinematische Zähigkeit der Flüssigkeit in Pa s.

Die Sinkgeschwindigkeit \(w_{s0} \) ist in Bild 55 graphisch dargestellt.

Wesentlichen Einfluss hat die Konzentration der Feststoffteilchen:

\[c_T = Q_s/(Q_s + Q_f) \] (43)

mit

- \(c_T \): Konzentration der Förderströme (Transportkonzentration),
- \(Q_s \): Förderstrom des Feststoffes in m³/s,
- \(Q_f \): Förderstrom der Flüssigkeit in m³/s.

Diese Konzentrationen vermindern zusammen mit den begrenzenden Wandeinflüssen der Rohrleitung die Sinkgeschwindigkeit durch die gegenseitige Verdrängerwirkung erheblich etwa nach der empirisch gefundenen Beziehung

\[w_s = w_{s0} \cdot (1 - c_T)^5 \] (44)

In der Wirkung nicht abschätzbar ist die unregelmäßige Form der Feststoffe, die von der Kugelform erheblich abweichen kann.

Auch der Einfluss des Kornspektrums ist kaum abschätzbar: Bild 56 zeigt exemplarisch über der logarithmisch geteilten Skala der Korngrößen denjenigen Massenanteil, der noch durch ein Sieb der jeweiligen Maschenweite hindurchfällt. Feststoffströme setzen sich in der Praxis fast immer aus Teilchen verschiedener Durchmesser zusammen, so dass das Kornspektrum einen mehr oder weniger ausgeprägten S-Schlag zeigt. Man hilft sich nun in einfachster Weise dadurch, dass man denjenigen Durchmesser, der einem Massenanteil von 50% entspricht, als \(d_{50} \) bezeichnet und als repräsentativ für

Bild 55: Sinkgeschwindigkeit \(w_{s0} \) kugeliger Einzelteilchen (Kugeldurchmesser \(d_s \)) im ruhenden Wasser
Diese Mischung ansieht. Hierin liegt die wichtigste Ursache für alle Unwägbarkeiten in der Planungsphase.

Es ist einzusehen, dass nach allen diesen Annahmen und groben Vereinfachungen exakte Vorhersagen über die Auswirkungen der Feststoffe auf das Verhalten der Strömung, der Anlagenkennlinien, der Förderhöhen und Wirkungsgrade von Pumpen usw. unmöglich sind. Es muss daher Sache der Experten sein, mit ausreichender Erfahrung aus ähnlichen Fällen Pumpen für den hydraulischen Feststofftransport auszulegen. Selbst dann muss man im Zweifelsfall Experimente zur Absicherung durchführen. Nur einige Tendenzen lassen sich allgemein angeben:

6.2 Einfluss auf die Pumpenkennlinien

Die Feststoffe verhalten sich im Fliehkraftfeld des Laufrades anders als die Trägerflüssigkeit, im allgemeinen Wasser. Sie durchqueren die Stromlinien der Wasserströmung und stoßen und reiben sich an den Wänden der Strömungskanäle. Dadurch vermindern sie die im Laufrad erzeugte Förderhöhe H um das Maß ΔH. Darüber gibt es experimentelle Erkenntnisse, die die Einflüsse von Teilchendurchmesser d_s, Konzentration c_T und Feststoffdichte ϱ_s sowie der spezifischen Drehzahl n_q wiedergeben. Danach lässt sich die relative Förderhöhenminderung $\Delta H/H$ grob abschätzen zu

$$
\Delta H/H = \left(\frac{c_T}{\psi}\right) \cdot \frac{3}{\sqrt{Re_s}} \cdot \left(\frac{11,83}{n_q}\right)^3 \cdot \left(\frac{\varrho_s}{\varrho_f} - 1\right)
$$

mit

- c_T Transportkonzentration nach Gleichung 43,
- ψ Druckziffer der Pumpe, hier etwa $= 1$,
- Re_s REYNOLDS-Zahl der Feststoffströmung nach Gleichung 42,
- n_q spezifische Drehzahl der Pumpe nach Gleichung 3,
- ϱ_s Dichte des Feststofes in kg/m3,
- ϱ_f Dichte der Flüssigkeit in kg/m3.

Beim hydraulischen Feststofftransport ist es nötig, die Kennlinien nicht als Förderhöhe H, sondern als Förderdruck Δp über dem Förderstrom Q darzustellen, weil die gemittelte Dichte ϱ_m des Feststoff-Wassergemisches (im Gegensatz zur Wasserverschmutzung) nicht konstant bleibt. Vereinfachend werden dabei in Gleichung 1 der geodätische Höhenunterschied $z_{s,d}$ zwischen Saug- und Druckstutzen sowie die Differenz der Geschwindigkeits höhen $c_d^2 - c_s^2$/2 g vernachlässigt, also die Druckhöhe $\Delta p = \Delta H$ gesetzt:

$$
\Delta p = \varrho_m \cdot g \cdot (H - \Delta H)
$$

mit

- ϱ_m gemittelte Dichte des Feststoff-Wassergemisches nach Gleichung 47 in kg/m3,
- g Fallbeschleunigung 9,81 m/s2,
- H Förderhöhe in m,
- ΔH Förderhöhenminderung nach Gleichung 45 in m,
- Δp Druck in N/m2 (zur Umrechnung in bar: 1 bar = 100 000 N/m2).

Die mittlere Dichte einer Mischung berechnet sich nach

$$
\varrho_m = c_T \cdot \varrho_s + (1 - c_T) \cdot \varrho_w
$$

mit

- ϱ_m mittlere Dichte in kg/m3,
- ϱ_w Dichte des Wassers in kg/m3,
- ϱ_s Dichte des Feststofes in kg/m3,
- c_T Transportkonzentration nach Gleichung 43.

6.3 Einfluss auf die Anlagenkennlinien

Mit abnehmender Strömungsgeschwindigkeit werden Feststoffteilen in horizontalen Rohrleitungen immer zahlreicher absinken und sich an der unteren Rohrwand ansammeln. Dadurch steigen einerseits die Reibungswiderstände und vermindert sich andererseits der noch freie Querschnitt, so dass sich trotz sinkender Förderströme die Strömungswiderstände erhöhen. Das hat die ungewöhnliche Form der Anlagenkennlinie wie in Bild 57 zur Folge. Da das Minimum dieser für mehrere Konzentrationen aufgezeichneten Kennlinien ein sicheres Indiz für die beginnende Ablagerung und schließlich Verstopfung der Rohrleitung ist, wird es allgemein als untere Betriebsgrenze angesessen. Genauere Vorhersagen sind nur mit ausreichender Erfahrung oder aus Experimenten zu wagen.

6.4 Betriebsverhalten

Bild 57 zeigt das typische Betriebsverhalten einer Kreiselpumpe beim hydraulischen Feststofftransport durch eine horizontale Rohrleitung: Mit steigender Konzentration verschiebt sich der Schnittpunkt der Anlagennennlinie mit der Pumpenkennlinie immer mehr zu kleineren Förderströmen, so dass der Betriebspunkt schließlich unter die Betriebsgrenze geraten würde. Um das zu vermeiden, muss jetzt unverzüglich die Regelung eingreifen. Da aber Drosselarmaturen starkem Verschleiß ausgesetzt wären, kommt zur Förderstromregelung beim hydraulischen Feststofftransport fast ausschließlich die Drehzahlverstellung in Betracht. Sie hat einen weiteren Vorteil: Wenn das Laufrad der Pumpe bei zunehmendem Erosionsverschleiß nur noch geringere Druck erhöhungen liefert, kann man dieses durch eine Drehzahlerhöhung leicht kompensieren.

Bild 57: Förderdruck der Pumpe ΔpP und Druckverluste der Anlage ΔpA bei verschiedenen Feststoffgehalt (Konzentrationen cTA, cTP) des Förderstromes Q. Der Förderdruck der Pumpe ΔpP = f(cT) kann mit zunehmender Konzentration cTP bei Feststoffen hoher Dichte auch ansteigen (im Bild mit 10 und 20% fallend dargestellt)
Höhere Feststoffkonzentrationen begrenzen den Einsatz von Kreiselpumpen; die Grenzwerte können nur durch Erfahrung gewonnen werden.

Die vorliegenden Ausführungen sollen den Leser davon überzeugen, dass eine Auslegung von Pumpen für den hydraulischen Feststofftransport ohne eigenen soliden Erfahrungsschatz sehr riskant und deswegen ausschließlich Sache von routinierten Experten ist!

6.5 Langfaserige Feststoffe

Falls im Förderstrom langfaserige Feststoffe enthalten sind, kann es insbesondere bei Propellerpumpen zu Betriebsstörungen kommen, wenn diese Stoffe (Pflanzenfasern, Kunststofffolien, Lumpen z.B.) an der Vorderseite der Propellerschaufel hängenbleiben und sich hier ansammeln. Die Folge davon ist ein immer stärker anwachsender Förderhöhenverlust und zugeleich Leistungsanstieg, bis der Antriebsmotor wegen Überlastung abgeschaltet werden muss.

Kommunales Rohabwasser enthält oft Textilien, die bei Laufrädern mit mehreren Schaufelkanälen oder ähnlichen Strömungssteilern zur Zopfbildung und zum Verstopfen der Laufräder führen können. Einschaufleräder, Schneckenräder oder Freistromräder (siehe Bild 43) sind hier weniger gefährdet.
Die Peripherie

7.1 Aufstellungsarten der Pumpen

Aufstellungsarten sind Bau-merkmale, um die sich die Erscheinungsformen der Pumpen innerhalb einer Bauform (im allgemeinen einer Baureihe) unterscheiden. Die folgenden Bilder 59 a bis o zeigen exemplarisch die häufigsten Aufstellungsarten für horizontale und vertikale Kreiselpumpen [1].

Wesentliche Parameter für die Aufstellungsart einer Pumpe sind:
- die horizontale oder vertikale Lage der Welle (Bilder a und b, auch i und c oder h und f),
- die Anordnung der Pumpenfüße unten oder in Achsmitte (Bilder d und e),
- die Aufstellung des Aggregates auf einem Fundament oder frei (Bilder b und f),
- die Anordnung der Antriebsmaschine auf eigener oder auf gemeinsamer Gundplatte oder an die Pumpe geflanscht (Bilder g, a, h und i),
- die Verteilung der Gewichte von Pumpe und Antriebsmaschine sowie
- die Anordnung des Druckstutzens bei Rohrgehäusepumpen, (Bilder k, l, m und n),
- Pumpengehäuse von außen trocken oder benetzt (Bilder b und o).

Bilder 59 a bis o: Beispiele von Aufstellungsarten
7.2 Gestaltung des Pumpeneinlaufs

7.2.1 Pumpensumpf

Der Pumpensumpf auf der Pumpensaugseite dient zum Sammeln und diskontinuierlichen Abpumpen der Förderflüssigkeit, wenn der anfallende mittlere Zuflussstrom kleiner als der Pumpenförderstrom ist. Seine Größe hängt ab vom Pumpenförderstrom Q und von der zulässigen Schalthäufigkeit Z der Elektromotore, siehe Abschnitt 3.3.3.1.

Das Nutzvolumen V_N des Pumpensumpfes berechnet sich nach

$$V_N = Q_{zu} \cdot \frac{Q_m - Q_{zu}}{Q_m \cdot Z} \quad (48)$$

mit

- Z: maximal zulässige Schaltzahl in 1/h,
- Q_{zu}: Zuflussstrom in m^3/h,
- $Q_m = (Q_e + Q_a) / 2$
- Q_e: Förderstrom beim Einschaltpunkt in m^3/h,
- Q_a: Förderstrom beim Auschaltpunkt in m^3/h,

Q_m Nutzvolumen des Pumpensumpfes einschließlich eines eventuellen Rückstauvolumens in m^3.

Das Maximum der Schalthäufigkeit ergibt sich, wenn der gemittelte Förderstrom Q_m doppelt so groß ist wie der zufließende Flüssigkeitsstrom Q_{zu}. Die maximale Schaltzahl Z_{max} pro Stunde wird dann zu

$$Z_{max} = \frac{Q_m}{4V_N}. \quad (49)$$

Bei verschmutzten Flüssigkeiten muss vermieden werden, dass sich Feststoffe in Toträumen und am Boden ablagernd und anstauen können. Hier können abgeschrägte Wände von mindestens 45°, besser 60° helfen, wie in Bild 60 gezeigt.
Die Saugleitung soll möglichst kurz und leicht steigend zur Pumpe verlaufen, gegebenenfalls sind exzentrische Saugrohre nach Bild 61 vorzusehen (mit einem genügend langen geraden Rohrstück vor der Pumpe $L \geq d$), um die Bildung von Luftsäcken zu verhindern. Ist ein Rohrkrümmer kurz vor dem Pumpeneinlauf bauseitig nicht zu vermeiden, ist ein Beschleunigungskrümmer (Bild 62) vorteilhaft, um die Strömung zu vergleichmäßigen; vor zweistromigen Pumpen oder Pumpen mit halbaxialen (oder gar axialen) Laufrädern ist aus dem gleichen Grunde ein Umlenkgitter im Krümmer (siehe Bild 63) erforderlich, sofern es die zu fördernde Flüssigkeit erlaubt (keine langfaserigen Feststoffe, siehe Abschnitt 6.5).
Der Abstand zwischen Saug- und Zulaufleitung im Saugbehälter bzw. Pumpensumpf muss genügend groß sein, um den Eintritt von Luft oder Wirbeln in die Saugleitung zu verhindern; gegebenenfalls sind Prallwände (Bilder 64 und 65) vorzusehen. Die Zulaufleitung muss immer unter dem Flüssigkeitsspiegel münden, siehe Bild 65.

Bei ungenügender Überdeckung der Saugleitung im Saugbehälter bzw. im Pumpensumpf durch den Flüssigkeitsspiegel kann bei Rotation des Fördermediums ein luftziehender Wirbel (Hohlwirbel) entstehen. Beginnend mit einer trichterförmigen Vertiefung des Flüssigkeitsspiegels bildet sich dann in kurzer Zeit ein Luftschlauch von der Oberfläche bis in die Saugleitung, der einen sehr unruhigen Lauf und einen Leistungsabfall der Pumpe zur Folge haben kann. Die deswegen notwendigen Mindestüberdeckungen (= Mindesteintauchtiefen) sind in Bild 67 angegeben, die Mindestabstände der Saugleitungen von Wänden und Behälterboden in Bild 66. (Bei Rohrgehäusepumpen gelten besondere Maßnahmen, siehe unter 7.2.3).

Die Mindestüberdeckung S_{min} kann aus Bild 67 als Funktion des Eintrittsdurchmessers d_E (das ist bei stumpf endenden Rohren der Rohrinnendurchmesser oder wenn vorhanden der Öffnungsdurchmesser der Einlaufdüse) und dem Förderstrom Q abgelesen oder nach Angaben des Hydraulic Institute wie folgt berechnet werden:

\[
S_{\text{min}} \geq \begin{cases}
6 d_E & \text{bei } Q \leq 100 \\
5.5 d_E & \text{bei } Q > 100
\end{cases}
\]

Bild 65: Rohrleitungsanordnung im Saugbehälter zur Vermeidung von Lufteintritt in die Pumpe

Bild 66: Wandabstände vom Saugrohr im Saugbehälter nach Angaben des VdS. S_{min} nach Bild 67.

2 Saugrohre nebeneinander erfordern einen Abstand $\geq 6 d_E$.
Mindestüberdeckung in m,
\(v_s \) Strömungsgeschwindigkeit = \(\frac{Q}{900 \pi d_E^2} \) in m/s, empfohlen 1 bis 2 m/s, aber keineswegs größer als 3 m/s,
\(Q \) Förderstrom in m³/h,
\(g \) Fallbeschleunigung 9.81 m/s²,
\(d_E \) Eintrittsdurchmesser des Saugrohres oder der Einlaufdüse in m.

Die vom VdS Schadenverhütung angegebenen Mindestüberdeckungen stimmen bei einer Strömungsgeschwindigkeit von 1 m/s sehr gut damit überein [13].

Wo die genannten Mindestüberdeckungen nicht oder nicht immer zur Verfügung gestellt werden können, sind gegen luftziehende Wirbel z.B. die in den Bildern 68 und 69 dargestellten Maßnahmen vorzusehen.

Unabhängig von den obigen Gesichtspunkten ist zu überprüfen, ob diese Eintauchtiefen auch die Anforderungen der NPSH₉₀-Berechnung nach Abschnitt 3.5.2 erfüllen.

Bild 68: Floß zur Verhinderung von luftziehenden Hohlwirbeln
Spezielle, aber häufige Fälle sind runde Behälter mit tangential angeordneter Zulaufleitung, deren austretender Strahl den Behälterinhalt in Rotation versetzt; hier sollten Leitvorrichtungen wie in Bild 70 vorgesehen werden.

7.2.3 Einlaufgestaltung bei Rohrgehäusepumpen [1]

Bei Rohrgehäusepumpen kommt der Mindestüberdeckung durch den Wasserspiegel und der Gestaltung der Einlaufkammer eine besondere Bedeutung zu, weil Laufräder hoher spezifischer Drehzahl sehr empfindlich auf ungleiche Zuströmungen und luftziehende Wirbel reagieren.

Bild 71 zeigt die Anordnung von Saugrohren in Einlaufkammern von Rohrgehäusen.

Bild 71: Saugrohranordnung in Einlaufkammern von Rohrgehäusepumpen. S_{min} nach Bild 72.

- $d_{E} = (1,5 \div 1,65) d_{s}$
- 2 Saugrohre nebeneinander erfordern einen Abstand $> 3 d_{E}$.
Für offene, nicht ausgekleidete Einlaufkammern mit und ohne Einlaufkegel kann die Mindestüberdeckung aus Bild 72 abgelesen oder nach der folgenden Gleichung berechnet werden:

\[S_{\text{min}} = 0.8 \cdot d_E + 1.38 \cdot v_s \cdot \sqrt{\frac{d_E}{g}} \]

mit

- \(S_{\text{min}} \) Mindestüberdeckung in m,
- \(v_s \) Strömungsgeschwindigkeit \(= \frac{Q}{900 \cdot \pi \cdot d_E^2} \) in m/s,
- \(Q \) Förderstrom in \(\text{m}^3/\text{h} \),
- \(g \) Fallbeschleunigung \(9.81 \text{ m/s}^2 \),
- \(d_E \) Eintrittsdurchmesser der Saugglocke in m.

Ausgekleidete oder überdeckte Einlaufkammern oder Kaplankrümmer sind aufwendiger, erlauben aber geringere Mindestüberdeckungen [1].

Unabhängig von den obigen Gesichtspunkten ist zu überprüfen, ob diese Eintauchtiefen auch die Anforderungen der NPSH

Berechnung nach Abschnitt 3.5.2 erfüllen.

7.2.4 Ansaughilfen

Die meisten Kreiselpumpen sind nicht selbstansaugend; das heißt, ihre Saugleitung und das saugseitige Pumpengehäuse müssen vor der Inbetriebnahme entlüftet sein, damit die Pumpe fördern kann, sofern das Laufrad nicht unter dem Flüssigkeitsspiegel angeordnet ist. Diese oft lästige Prozedur kann man vermeiden, wenn man den Eintritt des Saugrohres mit einem Fußventil

Bild 72: Mindesteintauchtiefe \(S_{\text{min}} \) des Saugrohres von Rohrgehäusepumpen zur Vermeidung von Hohlwirbeln

Bild 73: Fußventil (Tellerventil) mit Saugkorb
(in der Funktion einer Rückschlagarmatur) ausrüstet (Bild 73). Die Entlüftung ist dann nur bei der ersten Inbetriebnahme und nach längerer Stillstandszeit nötig.

Auch ein Saugbehälter (Saugkasten, Vakuumvorlage) erfüllt den gleichen Zweck, insbesondere bei verunreinigten Flüssigkeiten, (erhöht aber auch die Strömungsverluste und vermindert damit das NPSHvork): Vor den Saugstutzen der Pumpe wird ein vakuumdichter Behälter geschaltet (Bild 74), der vor der ersten Inbetriebnahme mit Förderflüssigkeit aufgefüllt werden muss. Beim Anfahren fördert die Pumpe diese Vorlage leer, wobei das Luftvolumen aus der als Heberleitung ausgeführten Saugleitung über deren Scheitel in den Behälter gesaugt wird, bis die anzusaugende Flüssigkeit nachströmen kann. Das Wiederauffüllen des Saugbehälters aus der Druckleitung kann von Hand oder automatisch geschehen, nachdem die Pumpe abgeschaltet wurde; das gespeicherte Luftvolumen entweicht dann wieder aus dem Saugbehälter in die Saugleitung.

Das Volumen \(V_B \) des Saugbehälters hängt nur vom Volumen der Saugleitung und von der Saughöhe der Pumpe ab:

\[
V_B = \frac{d_s^2 \cdot \pi}{4} \cdot L_s \cdot \frac{p_b}{\rho_g H_s - g \cdot H_s}
\]

mit

- \(V_B \): Volumen des Saugbehälters in m³,
- \(d_s \): Innendurchmesser der luftgefüllten Leitung in m,
- \(L_s \): gestreckte Länge der luftgefüllten Leitung in m,
- \(p_b \): Luftdruck in Pa (= 1 bar = 100 000 Pa),
- \(\rho \): Dichte der Förderflüssigkeit in kg/m³,
- \(g \): Fallbeschleunigung 9,81 m/s²,
- \(H_s \): Saughöhe der Pumpe in m nach der Gleichung
\[H_s = H_{sgeo} + H_{vs} \quad (53) \]

mit

- \(H_{sgeo} \) geodätische Saughöhe in m nach Bild 36,
- \(H_{vs} \) Widerstände in der Saugleitung in m (Abschnitt 3.2.1.2).

Da in den meisten Fällen \(H_{vs} \) deutlich kleiner sein wird als \(H_{sgeo} \), kann man sich Gleichung 53 ersparen und \(H_s = H_{sgeo} \) setzen. Für diesen Fall bietet Bild 75 für die Ermittlung der Behältergröße eine schnellere graphische Lösung.

Sicherheitshalber sollte das Volumen des Saugbehälters um den Faktor bis 2,5 vergrößert werden, bei kleinen Anlagen bis 3. Der Verdampfungsdruck der Flüssigkeit darf an keiner Stelle des Systems unterschritten werden.

Bild 75: Diagramm zur Ermittlung der Größe des Saugbehälters. Die Reihenfolge der Vorgehensweise ist mit Positionsnummern \(1 \) bis \(4 \) angegeben. Das rechnerische Ergebnis ist in der Graphik bereits mit dem Zuschlagfaktor 3,0 vervielfacht. (Drucköhenausgleichslverluste \(H_{vs} \) der Saugleitung vernachlässigt)
7.3 Anordnung von Messstellen

Damit bei Messungen von Drücken oder Strömungsgeschwindigkeiten eine bestimmte Messgenauigkeit eingehalten werden kann, muss die Strömung an den Messstellen geordnet sein. Um diesen Zustand zu erreichen, benötigt die Strömung vor und hinter der Messstelle ungestörte Rohrstrecken, die in Bild 76 bezeichnet und in Tabelle 14 angegeben sind. Da bei gelten alle Rohreinbauten, die den geradlinigen, parallelen und drallfreien Verlauf der Strömung beeinflussen können, als Störung.

Der VdS Schadenverhütung gibt für Betriebsmessungen Abstände in Vielfachen der Rohrdurchmesser an, ISO 9906 benennt Abstände für Abnahmemessungen. Beide Quellen sind in der Tabelle 14 erfasst.

Werden diese Strecken unterschritten, muss mit einer Verminderung der Messgenauigkeit gerechnet werden. Danach sind die Pumpenflansche als Messstellen für die oben genannten Zwecke ungeeignet.

Die Druckmessstellen sollen aus einer Bohrung von 6 mm Durchmesser und einer Schweißmuffe zur Anbringung des Manometers bestehen. Besser sind Ringmesskammern mit vier gleichmäßig am Umfang verteilten Bohrungen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Abstand vom Pumpenflansch</th>
<th>Ungestörte Rohrlänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>VdS 2092-S</td>
<td>A/D 0,5, A0/D 1,0</td>
<td>U/D 2,5, 5+n0/53</td>
</tr>
<tr>
<td>ISO 9906</td>
<td>2,0, 2,0</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Tabelle 14: Mindestwerte für ungestörte Rohrlängen bei Messstellen in Vielfachen des Rohrdurchmessers D

Bild 76: Anordnung von Druckmessstellen vor und hinter der Pumpe
7.4 Wellenkupplungen

In der Kreiselpumpentechnik werden starre und nachgiebige (elastische) Wellenkupplungen verwendet. Starre Kupplungen dienen vornehmlich zur Verbindung einwandfrei fluchtender Wellen, denn schon geringste Verlagerungen (Fluchtfehler) verursachen erhebliche Zusatzbeanspruchungen in der Wellenkupplung und auch in den benachbarten Wellenabschnitten.

Bild 77: Elastische (links) und hochelastische Kupplung

Bild 78: Pumpe mit Zwischenhülsenkupplung im Vergleich zur Normalkupplung
7.5 Belastung der Pumpenstutzen

Die auf dem Pumpenfundament befestigten Kreiselpumpen sollen möglichst nicht als Fixpunkte zur Befestigung der Rohrleitungen benutzt werden. Aber selbst wenn die Rohrleitungen bei der Montage spannungslos an die Pumpenstutzen ange schlossen werden, ergeben sich unter den Betriebsbedingungen (Druck und Temperatur) sowie durch die Gewichte der flüssig keitsgefüllten Rohrleitung Kräfte und Momente, die als Stut zenbelastung zusammengefasst werden. Sie führen zu Spannun gen und Verformungen in den Pumpengehäusen und vor allen Dingen zu Veränderungen in der Kupplungsausrichtung, so dass die Laufruhe der Pumpe und die Lebensdauer der elastischen Elemente in der Wellenkupplung sowie die Lager und Gleitring dichtungen darunter leiden können. Deswegen werden die zulässigen Stutzenbelastungen begrenzt [1].

Bild 79 zeigt als Beispiel die zulässigen Stutzenbelastungen an einstufigen Spiralgehäusepumpen nach ISO 5199 (durch gezogene Linien für Pumpen auf ausgegossener Grundplatte, gestrichelte Linien für Pumpen auf nicht ausgegossener Grundplatte).

7.6 Technische Regelwerke

Seit Anfang der 60er Jahre sind in der Bundesrepublik Deutschland zahlreiche nationale Normen und andere Technische Regelwerke entstanden, durch welche die Abmessungen, Herstellung, Ausführung, Beschaffung, Anforderungen und Verwendung von Kreiselpumpen und -aggregaten vorgeschrieben werden. Sie sind inzwischen in europäische und internationale Regelwerke eingeflossen, die gemeinsam von Betreibern und Herstellern erarbeitet wurden und die heute in nahezu allen Bereichen der pumpenverwendenden und -produzierenden Industrie eingeführt sind.

Bild 80 auf Seite 74 nennt die wichtigsten dieser Technischen Regelwerke.
Bild 80: Nationale und internationale Technische Regelwerke für Kreiselpumpen (Stand Ende 2005)
8. Rechenbeispiele

Die nachfolgenden Rechenbeispiele sind hinter 8. mit den jeweiligen Gleichungsnummern bezeichnet; beispielsweise be- handelt das Rechenbeispiel 8.3 die Anwendung der Glei- chung (3).

8.1 Förderdruck

Gesucht wird die Druckdifferenz, die die Manometer zwischen Druck- und Saugseite anzeigen. (Die Einbeziehung von \(z_s,d \) = 250 mm setzt voraus, dass die beiden Druckmessgeräte genau in Stutzenhöhe angebracht werden, also auch diesen Höhenunterschied haben; befinden sie sich dagegen auf gleicher Höhe, so ist \(z_s,d = 0 \) zu setzen; zur mess- technisch einwandfreien Lage der Messstellen siehe dagegen Absatz 7.3 und ISO DIS 9906).

Strömungsgeschwindigkeiten

\[
\begin{align*}
v_d &= 4 \cdot \frac{Q}{\pi \cdot d^2} = 4 \cdot \frac{(200/3600)}{\pi \cdot 0,08} = 11,1 \text{ m/s} \\
v_s &= 4 \cdot \frac{Q}{\pi \cdot d^2} = 4 \cdot \frac{(200/3600)/\pi \cdot 0,10}{2\cdot 9,81} = 7,08 \text{ m/s.}
\end{align*}
\]

Nach Gleichung (1) ist:

\[
\Delta p = \varrho \cdot g \cdot [H - z_{s,d} - (v_d^2 - v_s^2)] / 2g \\
= 998,2 \cdot 9,81 \cdot [57,5 - 0,250 - (11,1^2 - 7,08^2)]/(2 \cdot 9,81)] \\
= 524 356 \text{ Pa} = 5,25 \text{ bar}
\]

8.2 Leistungsbedarf

Gegeben sind die Daten der Aufgabe 8.1.

Gesucht: Leistungsbedarf \(P \).

Nach Gleichung (2) ist: \(P = \varrho \cdot g \cdot Q \cdot H / \eta \)

\[
= 998,2 \cdot 9,81 \cdot (200/3600) \cdot 57,5/0,835 \\
= 37 462 \text{ W} = 37,5 \text{ kW}
\]

8.3 Spezifische Drehzahl

Mit den Daten der Aufgabe 8.1 berechnet sich die spezifische Drehzahl \(n_q \) nach Gleichung (3) zu

\[
n_q = n \cdot \sqrt{Q_{opt} / H_{opt}^{3/4}} = 2900 \cdot \sqrt{(200/3600) / 57,5^{3/4}} \\
= 998,2 \cdot 9,81 \cdot (200/3600) \cdot 57,5/0,835 \\
= 37 462 \text{ W} = 37,5 \text{ kW}
\]

oder

\[
= 333 \cdot (n/60) \cdot \sqrt{Q_{opt} / (gH_{opt})^{3/4}} \\
= 333 \cdot 48,33 \cdot \sqrt{(200/3600)/9,81 \cdot 57,5^{3/4}} \\
= 333 \cdot 48,33 \cdot 0,236/115,7 = 32,8 \text{ (dimensionslos)}
\]
8.5 Bernoulli-Gleichung

Gegeben ist eine Kreiselpumpenanlage nach Bild 8 mit den Behältern B und D, ausgelegt für einen Förderstrom von Q = 200 m³/h zur Förderung von Wasser bei 20 °C. Der Druckbehälter steht unter einem Überdruck von 4, bar, der Saugbehälter D ist atmosphärisch belüftet, vₑ ≈ 0. Der geodätische Höhenunterschied beträgt 11,00 m; die geschweißte Druckleitung hat die Nennweite DN 200 (d = 210,1 mm nach Tabelle 4). Die Druckhöhenverluste der Anlage werden mit 0,48 m angegeben.

Gesucht wird die Anlagenförderhöhe Hₐ.

Nach Gleichg. (5) ist

\[Hₐ = H_{geo} + \frac{(p_a - p_e)}{(\varrho \cdot g)} + \frac{(vₐ^2 - vₑ^2)}{2g} + \Sigma H_v \]

mit

Dichte \(\varrho = 998,2 \text{ kg/m}^3 \) nach Tabelle 12,

Druck im Behälter B: \(p_a = 4,2 \text{ bar} = 420 000 \text{ Pa} \),

Druck im Behälter D: \(p_e = 0 \),

\[\frac{(p_a - p_e)}{(\varrho \cdot g)} = \frac{420 000/(998,2 \cdot 9,81)}{42,89 \text{ m}} \]

\[vₐ = 4 \frac{Q}{(3600 \cdot \pi \cdot d^2)} = 4 \cdot 200/(3600 \cdot \pi \cdot 0,2101^2) = 1,60 \text{ m/s} \]

\[\frac{(vₐ^2 - vₑ^2)}{2g} = \frac{(1,60^2 - 0)/(2 \cdot 9,81)}{0,13 \text{ m}} \]

\[H_{geo} = 11,00 \text{ m} \]

\[\Sigma H_v = 3,48 \text{ m} \]

\[Hₐ = 57,50 \text{ m} \]

8.9 Druckhöhenverluste in Rohrleitungen

Gegeben ist außer den Daten der Aufgabe 8.1 die Saugrohreleitung DN 200 mit d = 210,1 mm nach Tabelle 4, Länge 6,00 m, mittlere absolute Rauhigkeit k=0,050 mm.

Gesucht werden die Druckhöhenverluste \(H_v \), nach Bild 11 oder nach Gleichung (9).

Aus Diagramm Bild 11 folgt \(H_v = 1,00 \cdot 6,00/100 = 0,060 \text{ m} \)

Umständlicher, aber für andere Rauhigkeiten unvermeidlich, wäre die Berechnung nach Bild 10:

Relative Rauhigkeit \(d / k = 210,1 / 0,050 = 4202 \)

Nach Gleichung (11) ist die REYNOLDS-Zahl \(\text{Re} = v \cdot d / \nu \) mit

\[v = 1,00 \cdot 10^{-6} \text{ m}^2/\text{s}, \]

\[\nu = \frac{Q}{A} = \frac{(Q/3600) \cdot 4/(\pi d^2)}{(200/3600) \cdot 4/(\pi \cdot 0,2101^2)} = 1,60 \text{ m/s}, \]

\[\text{Re} = v \cdot d / \nu = 1,60 \cdot 0,2101 / 10^{-6} = 3,37 \cdot 10^5. \]

Aus Bild 10 folgt mit \(d / k = 4202 \rightarrow \lambda = 0,016. \)

Gleichung (9) liefert

\[H_v = \lambda \cdot (L / d) \cdot v^2 / 2g \]

\[= 0,016 \cdot (6,00 / 0,2101) \cdot 1,60^2 / 2 \cdot 9,81 = 0,060 \text{ m} \]
8.15
Druckhöhenverluste in Armaturen und Formstücken

Gegeben:
Die Saugleitung nach Aufgabe 8.9 enthält
- einen Flachschieber DN 200,
- einen 90°-Krümmer mit glatter Oberfläche und R = 5 d,
- ein Fußventil DN 200
und eine Rohrleitungsverengung DN 200/DN 100 nach Tabelle 8 von Typ IV mit einem Öffnungswinkel von α = 30°.

Gesucht werden die Druckhöhenverluste Hv.
Nach Tabelle 5 hat der Flachschieber einen Verlustbeiwert ζ = 0,20, nach Tabelle 6 hat der 90°-Krümmer einen Verlustbeiwert ζ = 0,10, nach Tabelle 5 hat das Fußventil etwa einen Verlustbeiwert ζ = 2,0, nach Tabelle 6 hat die Verengung einen Verlustbeiwert ζ = 0,21. Die Summe aller Verlustbeiwerte beträgt Σζ = 2,51.
Nach Gleichung (15) ergibt sich somit ein Druckhöhenverlust von
Hv = Σζ · v² / 2 g = 2,51 · 1,60² / (2 · 9,81) = 0,328 m

8.20
Lochblende
Gegeben:
Die Pumpe nach Aufgabe 8.1 hat eine geschweißte Druckleitung DN 80 mit einem Innendurchmesser von d = 83,1 mm. Die Förderhöhe soll um ΔH = 5,00 m ständig abgedrosselt werden.

Gesucht ist der Innendurchmesser dBl der Drosselblende.
Nach Gleichung (20) ist

dBl = f · \sqrt{Q / \sqrt{g · ΔH}} mit f nach Bild 25.
Zunächst berechnet man
\sqrt{Q / \sqrt{g · ΔH}} = \sqrt{200 / \sqrt{9,81 · 5,0}} = 5,34 m.

1. Schätzung dBl = 70 mm; (dBl / d)² = 0,709; f = 12,2;
Ergebnis: dBl = 12,2 · 5,34 = 65,1 mm
2. Schätzung dBl = 68 mm; (dBl / d)² = 0,670; f = 12,9;
Ergebnis: dBl = 12,9 · 5,34 = 68,9 mm
3. Schätzung dBl = 68,4; (dBl / d)² = 0,679; f = 12,8;
Ergebnis: dBl = 12,8 · 5,34 = 68,4 mm
8.21 Drehzahländerung

Gegeben:
Die Drehzahl der Pumpe nach Aufgabe 8.1 (Betriebsdaten mit Index 1) soll von \(n_1 = 900 \text{ min}^{-1} \) auf \(n_2 = 1450 \text{ min}^{-1} \) vermindert werden.

Gesucht werden die Daten für Förderstrom \(Q_2 \), Förderhöhe \(H_2 \) und Antriebsleistung \(P_2 \) nach der Änderung.

Nach Gleichung (21) ist:
\[
Q_2 = Q_1 \cdot \left(\frac{n_2}{n_1} \right) = 200 \cdot \left(\frac{1450}{2900} \right) = 100 \text{ m}^3/\text{h}
\]

Nach Gleichung (22) ist:
\[
H_2 = H_1 \cdot \left(\frac{n_2}{n_1} \right)^2 = 57,5 \cdot \left(\frac{1450}{2900} \right)^2 = 14,4 \text{ m}
\]

Nach Gleichung (23) ist:
\[
P_2 = P_1 \cdot \left(\frac{n_2}{n_1} \right)^3 = 37,5 \cdot \left(\frac{1450}{2900} \right)^3 = 4,69 \text{ kW},
\]

wenn der gleiche Wirkungsgrad für beide Drehzahlen angenommen wird.

8.27 Laufrad abdrehen

Gegeben:
Der Bestförderstrom der Pumpe nach Aufgabe 8.1 von \(Q_t = 200 \text{ m}^3/\text{h} \) soll durch Abdrehen des Laufradummessers von \(D_t = 219 \text{ mm} \) auf \(Q_r = 15 \text{ m}^3/\text{h} \) vermindert werden.

Gesucht werden der Abdrehdurchmesser \(D_r \) und die Bestförderhöhe \(H_r \) nach dem Abdrehen (\(H_t = 57,5 \text{ m} \)).

Nach Gleichung (27) ist
\[
D_r \approx D_t \cdot \sqrt{\frac{Q_r}{Q_t}} = 219 \cdot \sqrt{\frac{15}{200}} = 180 \text{ mm}
\]

Aus Gleichung (26) folgt dann
\[
H_r \approx H_t \cdot \sqrt{\frac{Q_r}{Q_t}} = 57,5 \cdot \sqrt{\frac{15}{200}} = 38,8 \text{ m}
\]

8.29 NPSH_{vorf} bei Saugbetrieb

Gegeben:
Die Kreiselpumpenanlage nach Aufgabe 8.5 wird durch folgende Daten ergänzt: Aufstellungsort 500 m über N.N.; \(H_{vs} \) (aus den Aufgaben 8.9 und 8.15) = 0,39 m; \(H_{geo} \) = 3,00 m; \(v_c \) = 0. Die Pumpe nach Aufgabe 8.1 ist horizontal aufgestellt wie in Bild 36 mit offenem Saugbehälter. Nach Bild 18 hat die Pumpe bei \(Q = 200 \text{ m}^3/\text{h} \) ein \(\text{NPSH}_{erf} = 5,50 \text{ m} \).

Gefragt wird, ob das NPSH_{vorf} ausreicht.

Nach Gleichung (29) ist
\[
\text{NPSH}_{vorf} = \left(p_e + p_b - p_D \right) / \left(\rho \cdot g \right) + v_c^2 / 2g - H_{vs} - H_{geo} \pm s'
\]

mit
\(\text{Behälterüberdruck} p_e = 0, \)
\(\text{Atmosphärendruck} p_b = 955 \text{ mbar} = 95,500 \text{ Pa} \) nach Tabelle 13,
\(\text{Verdampfungsdruck} p_D = 0,02337 \text{ bar} = 233,7 \text{ Pa} \) nach Tabelle 12,
\(\text{Dichte} \ \rho = 998,2 \text{ kg/m}^3 \) nach Tabelle 12.

\[
\left(p_e + p_b - p_D \right) / \left(\rho \cdot g \right) = (0 + 95500 - 233,7) / (998,2 \cdot 9,81) = 9,51 \text{ m}
\]

\[
v_c^2 / 2g = 0
\]

\[
H_{vs} = 0,39 \text{ m}
\]

\[
H_{geo} = 3,00 \text{ m}
\]

\(s' = 0, \) da Mitte Laufradeintritt und Mitte Saugstutzen auf gleicher Höhe liegen.

\[
\text{NPSH}_{vorf} = 6,12 \text{ m}
\]

Bei einem \(\text{NPSH}_{erf} = 5,50 \text{ m} \) ist hier \(\text{NPSH}_{vorf} > \text{NPSH}_{erf} \), also ausreichend.
8.31
NPSH_{vorn} bei Zulaufbetrieb

Gegeben: Alternativ zu Aufgabe 8.29 soll die dortige Anlage jetzt im Zulaufbetrieb mit geschlossenem Behälter wie im Bild 7 betrieben werden. Die Daten der Anlage lauten: Aufstellungsort 500 m über N.N.; \(H_{vs} \) (aus den Aufgaben 8.9 und 8.15) = 0,39 m; \(H_{geo} = 2,00 \) m; \(v_e = 0 \). Die Pumpe nach Aufgabe 8.1 ist horizontal aufgestellt wie in Bild 7 mit geschlossenem Saugbehälter, \(p_e = -0,40 \) bar (Unterdruck). Nach Bild 18 hat die Pumpe bei \(Q = 0 \) m³/h ein \(NPSH_{erf} = 5,50 \) m.

Gefragt wird, ob das \(NPSH_{vorn} \) ausreicht.
Nach Gleichung (31) ist
\[
NPSH_{vorn} = (p_e + p_b - p_D) / (\rho \cdot g) + \frac{v_e^2}{2g} - H_{vs} + H_{geo} \pm s'
\]
mit
\[
\begin{align*}
p_e & = -0,40 \text{ bar} = -40 000 \text{ Pa}, \\
p_b & = 955 \text{ mbar} = 95 500 \text{ Pa nach Tabelle 1}, \\
p_D & = 0,07 \text{ bar} = 7 \text{ Pa nach Tabelle 1}, \\
\rho & = 998, \text{ kg/m}^3 \text{ nach Tabelle 1}. \\
\end{align*}
\]
\[
\frac{(p_e + p_b - p_D)}{(\rho \cdot g)} = \frac{(-40 000 + 95 500 - 7)}{(998, \cdot 9,81)} = 5,43 \text{ m}
\]
\[
\frac{v_e^2}{2g} = 0
\]
\[
H_{vs} = 0,39 \text{ m}
\]
\[
H_{geo} = 2,00 \text{ m}
\]
\[
s' = 0, \text{ da Mitte Laufradeintritt und Mitte Saugstutzen auf gleicher Höhe liegen.}
\]
\[
NPSH_{vorn} = 7,04 \text{ m}
\]
Bei einem \(NPSH_{erf} = 5,50 \) m ist hier \(NPSH_{vorn} > NPSH_{erf} \), also ausreichend.

8.36
Pumpenkennlinie bei zähen Flüssigkeiten

Gegeben:
Mit der Kreiselpumpe nach Aufgabe 8.1 und den Kennlinien nach Bild 19 soll ein Mineralöl mit der Dichte \(\rho_z = 0,897 \) kg/dm³ und der kinematischen Viskosität von \(\nu_z = 500 \cdot 10^{-6} \) m²/s gefördert werden.

Gesucht werden die Kennlinien für Förderhöhe, Wirkungsgrad und Leistungsbedarf bei Betrieb mit dieser zähen Flüssigkeit unter Benutzung des Rechenblattes nach Bild 51.

Für das Aufsuchen der Umrechnungsfaktoren werden zunächst die folgenden Daten der Wasserförderung (Index \(w \)) benötigt:

<table>
<thead>
<tr>
<th>(Q/Q_{opt})</th>
<th>0</th>
<th>0,8</th>
<th>1,0</th>
<th>1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_w) aus Bild 18</td>
<td>0</td>
<td>66,5</td>
<td>62,0</td>
<td>57,5</td>
</tr>
<tr>
<td>(\eta_w)</td>
<td>0,81</td>
<td>0,835</td>
<td>0,84</td>
<td>0,805</td>
</tr>
<tr>
<td>(Q_z = Q_w \cdot f_Q)</td>
<td>0</td>
<td>134,4</td>
<td>168</td>
<td>201,6</td>
</tr>
<tr>
<td>(H_z = H_w \cdot f_H = H_w \cdot f_{H1})</td>
<td>66,5</td>
<td>56,2</td>
<td>50,6</td>
<td>44,9</td>
</tr>
<tr>
<td>(\eta_z = \eta_w \cdot f_{\eta})</td>
<td>0</td>
<td>502</td>
<td>518</td>
<td>499</td>
</tr>
<tr>
<td>(P_z = Q_z \cdot Hz \cdot Q_z / (\eta_z \cdot 367))</td>
<td>36,8</td>
<td>40,1</td>
<td>44,3</td>
<td></td>
</tr>
</tbody>
</table>

Darin sind für die Berechnung der Leistung \(P_z \) einzusetzen: Der Förderstrom \(Q_z \) in m³/h und die Dichte \(\rho \) in kg/dm³.

Die somit berechneten Kennlinienpunkte werden mit den Kennlinien aus Bild 18 (für 219 mm Laufraddurchmesser bei Wasserförderung geltend) in Bild 52 verglichen.
8.45 Förderhöhenminderung bei Hydrotransport

Gegeben: Feinkies mit einer Dichte von \(\rho_s = 700 \text{ kg/m}^3 \) und einem mittleren Korn- durchmesser von \(d_s = 5 \text{ mm} \) soll bei einer Konzentration von \(c_T = 15\% \) in kaltem Wasser (kinematische Viskosität \(\nu_f = 1,00 \cdot 10^{-6} \text{ m}^2/\text{s} \)) mit einer Kreiselpumpe (hydraulische Daten nach Aufgabe 8.1, spezifische Drehzahl \(n_q = \cdot \), Druckziffer \(\psi = 1,0 \)) gefördert werden.

Gesucht ist die Förderhöhenminderung \(\Delta H/H \) bei \(H = 57,5 \text{ m} \).

Nach Bild 55 ist die Sinkgeschwindigkeit \(w_{s0} \) einer einzelnen Kugel bei den oben genannten Bedingungen 0,5 m/s. Die REYNOLDS-Zahl ist dann \(\text{Re}_s = w_{s0} \cdot d_s / \nu_s = 0,5 \cdot 0,005 / 1,0 \cdot 10^{-6} = 500 \).

Die Förderhöhenminderung wird nach Gleichung (45) berechnet:

\[
\Delta H/H = c_T / \psi \cdot \sqrt{\text{Re}_s} \cdot (11,83 / n_q)^2 \cdot (Q_t / Q_t - 1) = (0,15 / 1,0) \cdot \sqrt{500} \cdot (11,83 / 33)^2 \cdot (2700 / 1000 - 1) = 0,15 \cdot 13,6 \cdot 0,0461 \cdot 1,70 = 0,16
\]

\[\Delta H = 0,16 \cdot 57,5 = 9,2 \text{ m} \]

Die Förderhöhe der Pumpe mit \(H_{\text{wopt}} = 57,7 \text{ m} \) würde unter obigen Bedingungen also um 16% vermindert werden auf \(57,5 - 9,2 = 48,3 \text{ m} \).

8.47 Mittlere Dichte

Gegeben: Hydrotransport nach Aufgabe 8.45.

Gesucht: Wie groß ist die mittlere Dichte \(\rho_m \) und wie wirkt sie sich auf den Förderdruck der Pumpe aus, steigt er an oder fällt er ab?

Nach Gleichung (47) ist die mittlere Dichte \(\rho_m = c_T \cdot \rho_s + (1 - c_T) \cdot \rho_f \) mit

\[
\rho_f \equiv \rho_w = 998,2 \text{ kg/m}^3 \text{ für Wasser bei } 20^\circ \text{C}.
\]

\[
\rho_m = 0,15 \cdot 2700 + 0,85 \cdot 998,2 = 1253 \text{ kg/m}^3
\]

Der Förderdruck ist nach Gleichung (46)

\[
\Delta p = \rho_m \cdot g \cdot (H - \Delta H)
\]

\[
= 1253 \cdot 9,81 \cdot (57,5 - 9,2) = 593 \text{ 700 Pa} = 5,94 \text{ bar}
\]

Das ist mehr als der Förderdruck bei Wasserbetrieb nach Aufgabe 8.1 mit \(\Delta p = 5,25 \text{ bar} \). Die Kennlinie \(\Delta p = f(Q) \) ist durch den hydraulischen Feststofftransport also um 13% angestiegen.

8.48 Pumpensumpf

Gegeben: Pumpensumpf für eine Pumpe nach Aufgabe 8.1 mit den Daten

Zuflussstrom \(Q_{zu} = 120 \text{ m}^3/\text{h} \),
Einschaltförderstrom \(Q_e = 220 \text{ m}^3/\text{h} \) und
Ausschaltförderstrom \(Q_a = 150 \text{ m}^3/\text{h} \)

Die maximal zugelassene Schaltzahl des Aggregates wird nach Tabelle 10 (Abschnitt 3.3.3.1, trockener Motor mit \(P > 30 \text{ kW} \)) gewählt zu \(Z = 10/\text{h} \).

Gesucht wird das Nutzvolumen \(V_N \) des Pumpensumpfes nach Gleichung (48) (alle Förderströme in \text{m}^3/\text{h}):

\[
V_N = Q_{zu} \cdot (Q_m - Q_{zu}) / (Q_m \cdot Z)
\]

mit

\[
Q_m = (Q_e + Q_a) / 2 = (220 + 150) / 2 = 185 \text{ m}^3/\text{h}
\]

\[
V_N = 120 \cdot (185 - 120) / (185 \cdot 10) = 4,22 \text{ m}^3/\text{h}
\]
8.50 Mindestüberdeckung

Gegeben ist die vertikale, stumpf endende Saugleitung nach Aufgabe 8.9 und nach Bild 8D mit dem Rohrinnendurchmesser \(d = d_E = 210,1 \text{ mm} \) bei einem Förderstrom \(Q = 200 \text{ m}^3/\text{h} \).

Gesucht ist die Mindesteintauchtiefe (Mindestüberdeckung) \(S_{\text{min}} \) in den offenen Saugbehältern. Die Strömungsgeschwindigkeit \(v_s \) im Saugrohreintritt beträgt

\[
V_s = \frac{Q}{A} = \left(\frac{Q}{3600} \right) / \left(\pi \cdot \frac{d_E^2}{4} \right) = \left(\frac{200}{3600} \right) \cdot \left(\pi \cdot 0,2101^2/4 \right) = 1,60 \text{ m/s}
\]

Nach Gleichung (50) ist die Mindesteintauchtiefe

\[
S_{\text{min}} = d_E + 2,3 \cdot v_s \cdot \sqrt{\frac{d_E}{g}}
\]

\[
= 0,2101 + 2,3 \cdot 1,60 \cdot \sqrt{\frac{0,2101}{9,81}}
\]

\[
= 0,75 \text{ m}
\]

Aus Diagramm Bild 67 erhält man das gleiche Ergebnis schneller.

Bild 66 liefert den erforderlichen Wandabstand mit >0,1 m, die Kanalbreite mit >1,26 m und den Bodenabstand mit 0,150 m.

8.52 Volumen des Saugbehälters

Gegeben ist eine Kreiselpummenanlage mit den Daten nach den Aufgaben 8.1 und 8.9 und mit der Anordnung eines Saugbehälters nach Bild 74. Die luftgefüllte Saugleitung der Nennweite DN 200 (Innendurchmesser \(d_s = 210,1 \text{ mm} \) nach Tabelle 4) hat eine gestreckte Länge von \(L_s = 6,00 \text{ m} \) bei einer geodätischen Saughöhe von \(H_{\text{geo}} = 2,60 \text{ m} \). Luftdruck \(p_b = 989 \text{ mbar} = 98 900 \text{ Pa} \); Dichte des Wassers bei 0 °C \(\varrho = 998,2 \text{ kg/m}^3 \), Verdampfungsdruck \(p_D = 2337 \text{ Pa} \).

Gesucht ist das Volumen des Saugbehälters nach Gleichung (52):

\[
V_B = \left(\frac{d_s^2 \cdot \pi}{4} \right) \cdot L_s \cdot p_b / (p_b - \varrho \cdot g \cdot H_s)
\]

Darin ist die Saughöhe \(H_s \) nach Gleichung 53:

\[
H_s = H_{\text{geo}} + H_{\text{vs}}
\]

\(H_{\text{geo}} \) ist mit 2,60 m gegeben, die Druckhöhenverluste der Saugleitung \(H_{\text{vs}} \) sind nachstehend aus \(H_{\text{vs1}} \) und \(H_{\text{vs2}} \) zu ermitteln:

1) Druckhöhenverluste \(H_{\text{vs1}} \) der Rohrleitung wie in Aufgabe 8.9:

\[
H_{\text{vs1}} = \lambda \cdot \left(\frac{L}{d_s} \right) \cdot \frac{v_s^2}{2g}
\]

mit

\[
\lambda = 0,016 \text{ aus Aufgabe 8.9,}
\]

\[
L = H_{\text{geo}} = 2,6 \text{ m (nicht 3,0 m, denn die Länge des Krümmers wird unter } H_{\text{vs2}} \text{ mit erfasst)},
\]

\[
d_s = 0,2101 \text{ m},
\]

\[
v_s = 1,60 \text{ m aus Aufgabe 8.9.}
\]

\[
H_{\text{vs1}} = 0,016 \cdot (2,60 / 0,2101) \cdot 1,60^2 / (2 \cdot 9,81) = 0,026 \text{ m}
\]

2) Druckhöhenverluste \(H_{\text{vs}} \) der Armaturen und Formstücke:

\(H_{\text{vs2}} \) besteht aus den Anteilen 180 °-Krümmer (2 x 90 °-Krümmer nach Tabelle 6 wie in Aufgabe 8.15) und Einlaufdüse nach Tabelle 7.

Verlustbeiwert \(\zeta \) des 180°-Krümmers (Faktor 1,4) = 1,4 \cdot 0,10 = 0,14.

Verlustbeiwert \(\zeta \) der Einlaufdüse (gebrochene Einlaufkante) = 0,20.

\[
H_{\text{vs2}} = \sum \zeta \cdot \frac{v_s^2}{2g} = (0,14 + 0,20) \cdot 1,60^2 / (2 \cdot 9,81) = 0,044 \text{ m}
\]

3) Zusammen also: \(H_{\text{vs}} = H_{\text{vs1}} + H_{\text{vs2}} = 0,026 + 0,044 = 0,070 \text{ m} \) und damit

\[
H_s = H_{\text{geo}} + H_{\text{vs}} = 2,60 + 0,07 = 2,67 \text{ m}
\]

Das Beispiel zeigt, dass die Druckhöhenverluste \(H_{\text{vs}} \) (= 0,070 m) bei kurzen Saugleitungen gegenüber der deutlich größeren geodätischen Saughöhe \(H_{\text{geo}} \) (= 2,60 m) vernachlässigt werden können, wodurch die Berechnung wesentlich einfacher wird. Rechnerisch kann jetzt das Volumen des Saugbehälters \(V_B \) nach Gleichung (52) berechnet
oder einfacher (wenn die Druckhöhenverluste \(H \) vernachlässigt werden) statt dessen aus dem Diagramm Bild 75 ermittelt werden:

\[
V_B = \left(\frac{d_s^2 \pi}{4}\right) \cdot L_s \cdot \frac{p_b}{(p_b - \varrho g H_s)}
\]

\[
= (0,2101^2 \cdot \pi/4) \cdot 3,0 \cdot 98 \, 900 / (98 \, 900 - 998,2 \cdot 9,81 \cdot 1,67)
\]

\[
= 0,141 \, m^3
\]

Gewählt wird ein Behälter mit dem 2,8-fachen Volumen von 0,40 \(m^3 \) (vergleiche Beispiel in Bild 75).

Zur Kontrolle:

Der niedrigste Druck ist \(= p_b - \varrho g H_s = 72 \, 828 \, Pa \).

Der Verdampfungsdruck ist 0,02337 bar \(= 2337 \, Pa \) und wird beim Entlüften nicht unterschritten.
9. Weiterführende Literatur

[1] Produktspezifische Dokumentation (KSB-Verkaufsunterlagen)
[2] KSB-Kreiselpumpenlexikon
Bild 3: Graphische Ermittlung der spezifischen Drehzahl \(n_q \)
Beispiel: \(Q_{\text{opt}} = 66 \text{ m}^3/\text{h} = 18,3 \text{ l/s} \); \(n = 1450 \text{ 1/min} \); \(H_{\text{opt}} = 17,5 \text{ m} \). Gefunden: \(n_q = 23 \text{ 1/min} \)
Bild 10: Rohrreibungsbeiwert λ als Funktion der REYNOLDS-Zahl Re und der relativen Rauhigkeit d/k
Bild 11: Druckhöhenverluste H_v für neue Stahlrohre ($k = 0,05 \, \text{mm}$)
Druckhöhenverluste von hydraulisch glatten Rohren

Bild 12: Druckhöhenverluste H_v für hydraulisch glatte Rohre ($k = 0$)
(Für Kunststoffrohre bei $t = 10\,^\circ C$ mit Temperaturfaktor φ zu multiplizieren)
Bild 35: Verdampfungsdruck p_D verschiedener Flüssigkeiten als Funktion der Temperatur t
Kinematische Zähigkeiten

Bild 47: Kinematische Zähigkeit ν verschiedener Mineralöle als Funktion der Temperatur t
Bild 48: Dichte \(\rho \) und kinematische Zähigkeit \(\nu \) verschiedener Flüssigkeiten als Funktion der Temperatur \(t \)
Ermittlung des Betriebspunktes

Gegeben:

<table>
<thead>
<tr>
<th>Förderstrom</th>
<th>Q_w</th>
<th>m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Förderhöhe</td>
<td>H_w</td>
<td>m</td>
</tr>
<tr>
<td>Drehzahl</td>
<td>n</td>
<td>1/min</td>
</tr>
<tr>
<td>Kinematische Viskosität</td>
<td>ν_z</td>
<td>m²/s</td>
</tr>
<tr>
<td>Dichte</td>
<td>ρ_z</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Fallbeschleunigung</td>
<td>g</td>
<td>9,81 m/s²</td>
</tr>
</tbody>
</table>

Rechengang

\[
\frac{Q}{Q_{\text{opt}}} = \begin{array}{cccc}
0 & 0,8 & 1,0 & 1,2 & - \\
Q_w & \text{aus Kennlinienheft für 4 Punkte der Kennlinie} & 0 & - & - \\
H_w & \text{Kennlinie} & 0 & - & - \\
\eta_w & \text{aus Abs. 3.1.5} & - & - & - \\
\end{array}
\]

\[
f_{Q, w} = \text{aus Bild 50} \quad - \\
f_{H, w} \quad - \\
f_{\eta, w} \quad - \\
Q_z = Q_w \cdot f_{Q, w} \quad 0 \\
H_z = \begin{array}{c}
H_w & \text{1)} \\
H_w \cdot f_{H, w} \cdot 1,03 & \text{2)} \\
H_w \cdot f_{H, 1, w} & \\
H_w \cdot f_{H, 1, w} & \\
\end{array}
m \\
\eta_z = \eta_w \cdot f_{\eta, w} \quad 0 \\
P_z = \frac{\eta_z \cdot g \cdot H_z \cdot Q_z}{\eta_z \cdot 1000 \cdot 3600} \quad k_W
\]

1) wird H_z größer als H_w, ist H_z = H_w zu setzen

2) Mit diesen Werten liegen 4 Punkte der QH_z- und Qη_z-Linie und 3 Punkte der QP_z-Linie fest. Über Q auftragen.

Bild 51: Rechenblatt zur Umrechnung der Pumpenkennlinien bei Förderung einer zähen Flüssigkeit nach dem KSB-Verfahren
Geschwindigkeitshöhe $v^2/2g$ als Funktion von Förderstrom Q und Rohrinnendurchmesser d
Differenz der Geschwindigkeitshöhe $\Delta \left(\frac{v^2}{2g} \right)$ als Funktion von Förderstrom Q und Rohrinnendurchmesser d_1 und d_2.
<table>
<thead>
<tr>
<th>Physischliche Größe</th>
<th>Formelzeichen</th>
<th>Gesetzliche Einheiten</th>
<th>nicht mehr zugelassene Einheiten</th>
<th>empfohlene Einheiten</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>l m</td>
<td>Meter</td>
<td>km, dm, cm, mm, µm</td>
<td>m</td>
<td>Basisseinheit</td>
</tr>
<tr>
<td>Volumen</td>
<td>V m³</td>
<td>Liter (1 l = 1 dm³)</td>
<td>cbm, cdm...</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Förderstrom, Volumenstrom</td>
<td>Q V</td>
<td>m³/s</td>
<td>l/s und m³/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit</td>
<td>t s</td>
<td>Sekunde</td>
<td>s, ms, µs, ns,...</td>
<td>s</td>
<td>Basisseinheit</td>
</tr>
<tr>
<td>Drehzahl</td>
<td>n 1/s</td>
<td>1/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse</td>
<td>m kg</td>
<td>Kilogramm</td>
<td>g, mg, µg, Tonne</td>
<td>kg</td>
<td>Basisseinheit</td>
</tr>
<tr>
<td>Dichte</td>
<td>ρ kg/m³</td>
<td>kg/dm³</td>
<td>kg/d m³ und kg/m³</td>
<td></td>
<td>Die Bezeichnung „Spezifisches Gewicht“ soll nicht mehr verwendet werden, da zweideutig (s. DIN 105).</td>
</tr>
<tr>
<td>Massenträgheitsmoment</td>
<td>J kg m²</td>
<td>kg m²</td>
<td>Massenmoment 2, Grades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massestrom</td>
<td>m kg/s</td>
<td>t/s, th, kg/h</td>
<td>kg/s und t/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraft</td>
<td>F N</td>
<td>Newton (= kg m/s²)</td>
<td>kN, mN, µN,...</td>
<td>N</td>
<td>1 kp = 9,81 N. Die Gewichtskraft ist das Produkt aus der Masse m und der örtlichen Fallbeschleunigung g.</td>
</tr>
<tr>
<td>Druck</td>
<td>p Pa</td>
<td>Pascal (= N/m²)</td>
<td>bar (1 bar = 10⁵ Pa)</td>
<td>bar</td>
<td>1 atm = 0,981 bar 1 mm Hg = 1,013 mbar 1 atm = 101300 mbar</td>
</tr>
<tr>
<td>Mechanische Spannung (Festigkeit)</td>
<td>σ, τ</td>
<td>Pa Pascal (= N/m²)</td>
<td>N/mm², N/cm²,...</td>
<td></td>
<td>1 kp/mm² = 9,81 N/mm²</td>
</tr>
<tr>
<td>Biegemoment, Drehmoment</td>
<td>M, T</td>
<td>N m</td>
<td>kp m, ...</td>
<td>N m</td>
<td>1 kp m = 9,81 N m</td>
</tr>
<tr>
<td>Energie, Arbeit, Wärmemenge</td>
<td>W, Q</td>
<td>J Joule (= N m = W s)</td>
<td>kJ, Ws, kWh, ... 1 kW h = 3600 kJ</td>
<td>kJ und kJ</td>
<td>1 kp m = 9,81 J 1 kcal = 4,1868 kJ</td>
</tr>
<tr>
<td>Förderhöhe</td>
<td>H m</td>
<td>Meter</td>
<td>m Fl. S.</td>
<td>m</td>
<td>Die Förderhöhe ist die der Masseneinheit des Fördermediums zugeführte Arbeit in J = N m, bezogen auf die Gewichtskraft dieser Masseneinheit in N.</td>
</tr>
<tr>
<td>Leistung</td>
<td>P W</td>
<td>Watt (= J/s = N m/s)</td>
<td>kW, kJ</td>
<td>kW</td>
<td>1 kp m/s = 9,81 W; 1 PS = 736 W</td>
</tr>
<tr>
<td>Temperatur, -differenz</td>
<td>T K</td>
<td>Kelvin °C</td>
<td>°K, grd</td>
<td>K</td>
<td>Basisseinheit</td>
</tr>
<tr>
<td>Kinematische Viskosität</td>
<td>ν</td>
<td>m³/s</td>
<td>St (Stokes), °E, ...</td>
<td>m³/s</td>
<td>1 St = 10⁻⁶ m³/s 1 cSt = 1 mm²/s</td>
</tr>
<tr>
<td>Dynamische Viskosität</td>
<td>η</td>
<td>Pa s</td>
<td>P (Poise), Pa s</td>
<td></td>
<td>1 P = 0,1 Pa s</td>
</tr>
<tr>
<td>Spezifische Drehzahl</td>
<td>nq l</td>
<td>1</td>
<td>1</td>
<td></td>
<td>nq = 333 · n · (\sqrt{\frac{1}{\text{Fl} \cdot \text{opt}}}) in SI-Einheiten (m und s)</td>
</tr>
</tbody>
</table>
42,– Euro

ISBN 3-00-0004734-4