

KSB Know-how

Auslegung von Kreiselpumpen

diese Broschüre dient lediglich dazu, Kenntnisse über die Auslegung von Kreiselpumpen zu erweitern. Nationale und internationale Normen sind selbstverständlich immer zu berücksichtigen. Weitere Informationen zur Spezifikation der in Frage kommenden KSB-Produkte entnehmen Sie bitte den KSB-Katalogen.

Seite		Seite	
04	Formelzeichen, Einheiten und Benennungen	74	Rechenbeispiele
06	Pumpenbauarten		Rechenbeispiel 1: Förderdruck
	Trockener (Norm-)Motor		Rechenbespiel 2: Leistungsbedarf
			Rechenbeispiel 3: Spezifische Drehzahl
	Nassläufermotor		Rechenbeispiel 4: Anlagenförderhöhe H _a
09	Auslegung für die Förderung von Wasser		Rechenbeispiel 5: Druckhöhenverlust H _v in Rohrleitungen
	Pumpendaten		Rechenbeispiel 6: Druckhöhenverlust H _v in Armaturen und Formstücken
15	Anlagendaten		Rechenbeispiel 7:
	Förderhöhe H _a der Anlage		Lochblende
	Druckverluste p _v durch Strömungswiderstände		Rechenbeispiel 8: O H und P pach Drehzahländerung
	Druckhöhenverluste H _v in geraden Rohrleitungen		
	Druckhöhenverluste H _v in		D _r und H _r nach Laufrad abdrehen
	Armaturen und Formstücken		Rechenbeispiel 11:
	Kennlinien der Anlage		NPSH _{vorh} bei Saugbetrieb
	Auswahl der Pumpe		Rechenbeispiel 12: NPSH bei Zulaufbetrieb
	Betriebsverhalten und Regelung		Rechenheisniel 13:
	Saug- und Zulaufverhältnisse		Pumpenkennlinien bei zähen Flüssigkeiten
	Einfluss von Verunreinigungen		Rechenbeispiel14: Förderhöhenminderung bei Hydrotransport
47	Besonderheiten bei der Förderung zäher Flüssigkeiten		Rechenbeispiel 15:
	Die Fließkurve		Mittlere Dichte ρ_{m}
- 4			Rechenbeispiel 16: Pumpensumpf
56	Besonderheiten bei der Forderung gashaltiger Flüssigkeiten		Rechenbeispiel 17: Mindestüberdeckung
58	Besonderheiten bei der Förderung feststoffhaltiger Flüssigkeiten		Rechenbeispiel 18: Volumen des Saugbehälters
	Betriebsverhalten		
	Langfaserige Feststoffe	82	Weiterführende Literatur
63	Die Peripherie	83	Gesetzliche Einheiten, Auszug für Kreiselpumpen
	Aufstellungsarten der Pumpen		
	Gestaltung des Pumpeneinlaufs		

Know-how-Bände können Sie hier ganz einfach herunterladen oder bestellen: www.ksb.de/know-how

Formelzeichen, Einheiten und Benennungen

Zeichen	Einheit	Benennung
A	m²	durchströmter Querschnitt
A	m	Abstand zwischen Messstelle und Pumpenflansch
a	m, mm	Kanalbreite rechteckiger Krümmer
В	m, mm	Bodenabstand des Saugrohres
C _D		Widerstandsbeiwert der Kugel in Wasserströmung
C _T	%	Feststoffkonzentration im Förderstrom
D	m, mm	Außendurchmesser, größter Durchmesser
DN		Nennweite
d	m, mm	Innendurchmesser, kleinster Durchmesser
d _s	m, mm	Korndurchmesser von Feststoffen
d ₅₀	m, mm	mittlerer Korndurchmesser von Feststoffen
F	N	Kraft
f		Drosselbeiwert der Lochblende
f _H		Umrechnungsfaktor für Förderhöhe (KSB-System)
f _o		Umrechnungsfaktor für Förderstrom (KSB-System)
f_		Umrechnungsfaktor für Wirkungsgrad (KSB-System)
g	m/s ²	Fallbeschleunigung = 9,81 m/s ²
Н	m	Förderhöhe
Hgeo	m	geodätische Förderhöhe
H _s	m	Saughöhe
H _{S deo}	m	geodätische Saughöhe
H _{z geo}	m	geodätische Zulaufhöhe
- <u></u> H _v	m	Verlusthöhe
H ₀	m	Nullförderhöhe (bei Q = 0)
- I	A	elektrische Stromstärke
К		Typenbezeichnung (spezifische Drehzahl)
k	mm, µm	mittlere absolute Rauhigkeit
k		Umrechnungsfaktoren k _o , k _u , k _a (HI-Verfahren)
k _v	m³/h	Verlustkennzahl bei Armaturen
L	m	Rohrlänge
L _s	m	gestreckte Länge der luftgefüllten Leitung
M	Nm	Moment
NPSH	m	NPSH-Wert der Pumpe (erforderlich)
NPSH _{vorb}	m	NPSH-Wert der Anlage (vorhanden)
N _s		spezifische Drehzahl (in den USA)
 n	min ⁻¹ , s ⁻¹	Drehzahl
n	min ⁻¹	spezifische Drehzahl (auch dimensionslos als bautypische Kennzahl des Laufrades)
P	kW, W	Leistung, Leistungsbedarf
p	N/m ²	Überdruck im Saug- bzw. Zulaufbehälter
PN	bar	Nenndruck
Δρ	bar, Pa	Förderdruck, Druckdifferenz (Pa ≡ N/m²)
p	bar, Pa	Druck (Pa = N/m ² = 10 ⁻⁵ bar)
p _b	mbar, Pa	atmosphärischer Luftdruck
р _р	bar, Pa	Verdampfungsdruck der Förderflüssigkeit
<u> </u>	bar, Pa	Druckverlust
• v		

Zeichen	Einheit	Benennung
Q	m³/s, m³/h	Förderstrom (auch in l/s)
Q _a	m³/h	Förderstrom beim Ausschaltdruck
Q _e	m³/h	Förderstrom beim Einschaltdruck
q	%	Luft- bzw. Gasgehalt in der Förderflüssigkeit
R	m, mm	Radius
Re		Reynolds-Zahl
S	m	Überdeckung, Eintauchtiefe
s	mm	Wandstärke
s'		Höhendifferenz zwischen Mitte Laufradeintritt und Mitte Pumpensaugstutzen
Т	Nm	Drehmoment
t	°C	Temperatur
U	m	Länge der ungestörten Strömung
U	m	benetzter Umfang des durchströmten Querschnitts
V _B	m ³	Volumen des Saugbehälters
V _N	m ³	Nutzvolumen des Pumpensumpfes
v	m/s	Strömungsgeschwindigkeit
w	m/s	Sinkgeschwindigkeit von Feststoffen
у	mm	Öffnungshub des Schiebers, Wandabstand
Z	1/h	Schaltzahl (Schalthäufigkeit)
z		Stufenzahl
Z _{s, d}	m	Höhenunterschied zwischen Druck- und Saugstutzen der Pumpe
α	o	Umlenkungswinkel, Öffnungswinkel
δ	0	Neigungswinkel
ζ		Verlustbeiwert
η	Pa s	dynamische Viskosität
λ		Rohrreibungsbeiwert
v	m²/s	kinematische Viskosität
ρ	kg/m³	Dichte
т	N/m ²	Schubspannung
T _f	N/m ²	Schubspannung an der Fließgrenze
φ		Temperaturfaktor, Öffnungswinkel der Klappe, als cos φ Leistungsfaktor von Asynchronmotoren
Ψ		Druckziffer (dimensionslose Laufradförderhöhe)

Indices		Indices	
A	auf die Anlage bezogen	opt	Bestwert, im Punkt besten Wirkungsgrads
а	am Austrittsquerschnitt der Anlage, abzweigend	Р	auf die Pumpe bezogen
BI	auf die Bohrung der Lochblende bezogen	р	auf den Druck bezogen
d	druckseitig, am Druckstutzen, durchfließend	r	reduziert, bei ab- oder ausgedehntem Laufrad
dyn	dynamischer Anteil	s	saugseitig, am Saugstutzen
E	am engsten Querschnitt von Armaturen	S	auf den Feststoff (solid) bezogen
E	am Eintritt des Saugrohres oder der Saugglocke	stat	statischer Anteil
е	am Eintrittsquerschnitt der Anlage, z. B. im Saug- oder Zulaufbehälter	t	bezogen auf das Laufrad
f	auf die Trägerflüssigkeit bezogen	V	vertikal
Н	horizontal	v	auf die Verluste bezogen
к	auf die Krümmung bezogen	w	auf Wasser bezogen
m	Mittelwert	z	auf die zähe Flüssigkeit bezogen
max	Maximalwert	0	Ausgangsposition, auf die Einzelkugel bezogen
min	Minimalwert	1, 2, 3	Zählziffern, Position
N	Nennwert	I, II	Zahl der betriebenen Pumpen

Pumpenbauarten

Die Unterscheidungsmerkmale für Kreiselpumpen ergeben sich aus den Auslegungsdaten (Förderstrom Q, Förderhöhe H, Drehzahl n und NPSH), den Eigenschaften der Förderflüssigkeit, den technischen Anforderungen am Einsatzort und den dort geltenden Vorschriften durch Gesetze oder technische Regelwerke. Diese außerordentliche Vielfalt bedingt zahlreiche Bauarten, die im Pumpenbauprogramm von KSB angeboten werden.

Die auffallendsten Baumerkmale der Grundbauarten sind

- die Stufenzahl (einstufig / mehrstufig)
- die Wellenlage (horizontal / vertikal)
- das Gehäuse (radial z. B. Spiralgehäuse / axial = Rohrgehäuse)
- die Zahl der Laufradströme (einströmig / zweiströmig)
- die Benetzung des Motors (trockener Motor / Tauchmotor = innen trocken / Nassläufermotor = innen nass, z. B. Spaltrohrmotor, Unterwassermotor)

Für diese Baumerkmale, die im allgemeinen das Erscheinungsbild einer Baureihe bestimmen, sind nachstehend einige Beispiele abgebildet (Tabelle 1 und Abb. 1 bis Abb. 16). Darüber hinaus sind weitere Merkmale einer Kreiselpumpe

- die Aufstellungsart (siehe ab Seite 63)
- die Nennweite (für die Baugröße, abhängig vom Förderstrom)
- die Temperatur (für die Kühlung von Wellendichtungen z. B.)
- das Fördermedium (abrasive, aggressive, giftige Flüssigkeiten)
- die Laufradbauart (radial / axial je nach spezifischer Drehzahl)
- die F\u00e4higkeit zur Selbstansaugung
- die Gehäuseteilung, die Stutzenstellung, ein Topfgehäuse usw.

Stufenzahl			eins	tufig			mehrs	tufig
Wellenlage		horizontal			vertikal		horizontal	vertikal
Gehäusebauart	rad	ial	axial	rad	lial	axial	Stufeng	ehäuse
Zahl der Laufradströme	1	2	1	1	2	1	1	1
Motorbauart	Abb. Nr.							
trockener (Norm-)Motor	1	2	3	4	5	6	7	8
trockener (Norm-)Motor mit Magnetantrieb	9							
Tauchmotor			10	11		12		13
Nassläufermotor	14						15	16

Tabelle 1: Grundbauarten von Kreiselpumpen

Trockener (Norm-)Motor

Abb. 1: einstufig, horizontale Welle, radiales Gehäuse, 1 Laufradstrom

Abb. 4: einstufig, vertikale Welle, radiales Gehäuse, 1 Laufradstrom

Abb. 2: einstufig, horizontale Welle, radiales Gehäuse, 2 Laufradströme

Abb. 5: einstufig, vertikale Welle, radiales Gehäuse, 2 Laufradströme

Abb. 3: einstufig, horizontale Welle, axiales Gehäuse, 1 Laufradstrom

Abb. 6: einstufig, vertikale Welle, axiales Gehäuse, 1 Laufradstrom

Abb. 7: mehrstufig, horizontale Welle, Stufengehäuse, 1 Laufradstrom

Abb. 8: mehrstufig, vertikale Welle, Stufengehäuse, 1 Laufradstrom

Trockener (Norm-)Motor mit Magnetantrieb

Abb. 9: einstufig, horizontale Welle, radiales Gehäuse, 1 Laufradstrom

Tauchmotor

Abb. 10: einstufig, horizontale Welle, axiales Gehäuse, 1 Laufradstrom

Abb. 11: einstufig, vertikale Welle, radiales Gehäuse, 1 Laufradstrom

Abb. 12: einstufig, vertikale Welle, axiales Gehäuse, 1 Laufradstrom

Abb. 13: mehrstufig, vertikale Welle, Stufengehäuse, 1 Laufradstrom

Nassläufermotor

Abb. 14: einstufig, horizontale Welle, radiales Gehäuse, 1 Laufradstrom

Abb. 15: mehrstufig, horizontale Welle, Stufengehäuse, 1 Laufradstrom

Abb. 16: mehrstufig, vertikale Welle, Stufengehäuse, 1 Laufradstrom

Auslegung für die Förderung von Wasser

Pumpendaten

Förderstrom Q der Pumpe

Der Förderstrom Q ist das in der Zeiteinheit am Pumpendruckstutzen nutzbar gelieferte Volumen in m³/s (gebräuchlich sind auch l/s und m³/h). Er verändert sich proportional mit der Pumpendrehzahl. Leckwasser sowie die pumpeninternen Spaltströme zählen nicht zum Förderstrom.

Förderhöhe H und Förderdruck Ap der Pumpe

Die Förderhöhe H einer Pumpe ist die von ihr auf die Förderflüssigkeit übertragene, nutzbare mechanische Arbeit in Nm, bezogen auf die Gewichtskraft der geförderten Flüssigkeit in N, ausgedrückt in Nm/N = m (früher auch m Flüssigkeitssäule genannt). Sie ist proportional dem Quadrat der Drehzahl des Laufrades und unabhängig von der Dichte ρ der Förderflüssigkeit, d. h. eine bestimmte Kreiselpumpe fördert verschiedene Flüssigkeiten (gleicher kinematischer Zähigkeit n) unabhängig von ihrer Dichte ρ auf gleiche Förderhöhen H. Diese Aussage gilt für alle Kreiselpumpen.

Die Pumpenförderhöhe H äußert sich gemäß der Bernoulli-Gleichung (siehe Seite 15)

- in der Druckhöhe H_p proportional zum Unterschied der statischen Drücke zwischen Druck- und Saugstutzen der Pumpe in der geodätischen Höhe z_{s,d} (Abb. 23 und Abb. 24), das ist der Höhenunterschied zwischen Druck- und Saugstutzen der Pumpe
- in der Differenz der Geschwindigkeitshöhen (v_a)² v_a²/2g an Druck- und Saugstutzen der Pumpe

-Für die Druckerhöhung D_p in der Pumpe (Lage der Druckmessstellen nach beachten! Siehe Seite 71) ist allein die Druckhöhe H_p zusammen mit der Dichte ρ der Förderflüssigkeit maßgebend nach der Gleichung

$$\Delta \mathbf{p} = \mathbf{\rho} \cdot \mathbf{g} \cdot \left(\mathbf{H} - \mathbf{z}_{s, d} - \frac{\mathbf{v}_{d}^{2} - \mathbf{v}_{s}^{2}}{2 \cdot \mathbf{g}} \right)$$

Legende:

- ρ = Dichte der Förderflüssigkeit in [kg/m³]
- g = Förderhöhe der Pumpe in m
- z_{s,d} = Höhenunterschied zwischen Druck- und Saugstutzen der Pumpe in m (siehe Abb. 23 und Abb. 24)
- v_{d} = Strömungsgeschwindigkeit im Druckstutzen = $4^{4}/\pi d_{o}^{2}$ in [m/s]
- $v_s = Strömungsgeschwindigkeit im Saugstutzen = 40/md_i^2 in [m/s]$
- Q = Förderstrom der Pumpe am jeweiligen Stutzen in [m³/s]
- d = Innendurchmesser am jeweiligen Pumpenstutzen in [m]
- $D_p = Förderdruck in [N/m^2]$
 - (Zur Umrechnung in bar: 1 bar = 100 000 N/m²)

Hohe Dichten erhöhen also den Förderdruck und damit den Enddruck der Pumpe. Der Enddruck ist die Summe aus Förderdruck und Zulaufdruck und ist durch die Gehäusefestigkeit begrenzt. Zu beachten ist weiterhin die Begrenzung der Gehäusefestigkeit durch Temperatureinflüsse.

Wirkungsgrad und Leistungsbedarf P an der Pumpenwelle Der Leistungsbedarf P einer Pumpe ist die an der Pumpenwelle oder -kupplung aufgenommene mechanische Leistung in kW oder W; er ist proportional der dritten Potenz der Drehzahl und wird ermittelt nach einer der folgenden Formeln:

$$P = \frac{\rho \cdot g \cdot Q \cdot H}{\eta} \text{ in [W]}$$
Formel (2)
$$= \frac{\rho \cdot g \cdot Q \cdot H}{1000 \cdot \eta} \text{ in [kW]}$$
Formel (3)

$$= \frac{\rho \cdot \mathbf{Q} \cdot \mathbf{H}}{367 \cdot \mathbf{n}} \quad \text{in [kW]} \qquad \text{Formel (4)}$$

Legende:

Formel (1)

 ρ = Dichte in [kg/m³]

Q = Förderstrom in [m³/s]

g = Fallbeschleunigung = $9,81 \text{ m/s}^2$

H = Förderhöhe in [m]

η = Wirkungsgrad zwischen 0 und <1 (nicht in %)</pre>

Der Pumpenwirkungsgrad η ist in den Kennlinien (siehe ab Seite 13) angegeben. Der Leistungsbedarf P der Pumpe kann auch genügend genau direkt aus den Pumpenkennlinien (siehe ab Seite 13) für die Dichte $\rho = 1000$ kg/m3 entnommen werden. Bei anderer Dichte ρ ist der abgelesene Leistungsbedarf P proportional umzurechnen.

Bei der Förderung von Flüssigkeiten mit höherer Zähigkeit als Wasser (siehe "Besonderheiten bei der Förderung zäher Flüssigkeiten" auf Seite 47) oder mit höherem Feststoffanteil (siehe "Besonderheiten bei der Förderung feststoffhaltiger Flüssigkeiten" auf Seite 58) ist ein höherer Leistungsbedarf zu erwarten (dazu gehört auch die Förderung von Abwasser, siehe unter "Einfluss von Verunreinigungen" auf Seite 46).

Die Dichte ρ geht linear in den Leistungsbedarf P der Pumpe ein. Bei sehr hohen Dichten sind deshalb die zulässigen Höchstwerte der Motorbelastung ("Auswahl des Elektromotors – Bemessung der Motorleistung" auf Seite 29) und des Drehmomentes (wegen der Belastung von Kupplung, Welle und Passfedern) zu beachten!

Drehzahl n

Bei Antrieb mit Drehstrommotoren (Asynchronmotoren mit Kurzschlussläufer nach IECNorm) werden folgende Drehzahlen für die Pumpe zugrunde gelegt:

Polzahl	2	4	6	8	10	12	14
Frequenz bei 50 Hz	2.900	1.450	960	725	580	480	415
Frequenz bei 60 Hz	3.500	1.750	1.160	875	700	580	500

Tabelle 2: Bezugsdrehzahlen der Kennliniendokumentation in [min-1]

In der Praxis laufen die Drehstrommotoren jedoch (abhängig von der Leistung P und vom Hersteller) mit geringfügig höheren Drehzahlen[1], die der Pumpenhersteller mit Einverständnis des Kunden bei der Auslegung berücksichtigen kann; es gilt das Affinitätsgesetz (siehe Formel (23 auf Seite 35).

Die Kennlinien von Tauchmotorpumpen und Unterwassermotorpumpen sind bereits für die effektiven Drehzahlen ihrer Antriebsmaschinen ausgelegt. Mit Drehzahlverstellungen (z. B. mittels Phasenanschnittsteuerung bei Leistungen bis zu wenigen kW, sonst meistens mittels Frequenzumrichter), Getrieben oder Riementrieben sowie bei Antrieb mittels Turbinen oder Verbrennungskraftmaschinen sind andere Pumpendrehzahlen möglich.

Hochdruckrad Mitteldruckrad Niederdruckrad ng bis 25 min⁻¹ Mitteldruckrad Niederdruckrad ng bis 25 min⁻¹ Mitteldruckrad ng bis 70 min⁻¹ Hochdruckrad ng bis 40 min⁻¹ Niederdruckrad ng bis 25 min⁻¹ Propellerrad ng bis 160 min⁻¹ Propellerrad

Abb. 17: Einfluss der spezifischen Drehzahl n_q auf die Bauformen von Kreiselpumpenlaufrädern. Die Leitapparate (Gehäuse) einstufiger Pumpen sind angedeutet

Spezifische Drehzahl n_q und Laufradbauformen

Die spezifische Drehzahl n_q ist eine aus der Ähnlichkeitsmechanik übernommene Vergleichszahl, die es gestattet, bei unterschiedlichen Betriebsdaten (Förderstrom Q_{opt} , Förderhöhe H_{opt} und Drehzahl n eines Pumpenlaufrades im Punkt besten Wirkungsgrades η_{opt}) Laufräder verschiedener Baugrößen miteinander zu vergleichen und ihre optimale Bauform (siehe Abb. 17) sowie die Form der zugehörigen Pumpenkennlinie (siehe Abb. 20) zu klassifizieren.

 n_q ist die gedachte Drehzahl eines geometrisch ähnlich veränderten Laufrades mit dem Förderstrom 1 m³/s und der Förderhöhe 1 m im Punkt besten Wirkungsgrades und hat dieselbe Einheit wie die Drehzahl. Als zahlengleiche bautypische Kennzahl kann sie auch nach dem rechten Teil der folgenden Gleichungen dimensionslos dargestellt werden [2]:

$$\begin{split} \mathbf{n}_{q} &= \mathbf{n} \cdot \frac{\sqrt{\mathbf{Q}_{opt}}}{\mathbf{H}_{opt}^{\frac{3}{4}}} = \mathbf{333} \cdot \mathbf{n} \cdot \frac{\sqrt{\mathbf{Q}_{opt}}}{\left(\mathbf{g} \cdot \mathbf{H}_{opt}\right)^{\frac{3}{4}}} & \text{Formel (5)} \end{split}$$
Legende:

$$n_{q} &= \text{dimensionslose Kennzahl} \\ n &= \text{Pumpendrehzahl in [S^{-1}]} \\ \mathbf{Q}_{opt} &= \text{Förderstrom bei } \eta_{opt} \text{ in [m}^{-3}/\text{S}] \\ \mathbf{H}_{opt} &= \text{Förderhöhe bei } \eta_{opt} \text{ in [m]} \\ g &= \text{Fallbeschleunigung = 9,81 m/s}^{2} \end{split}$$

Bei mehrstufigen Pumpen ist für H_{opt} die Bestförderhöhe einer Stufe und bei zweiströmigen Laufrädern für Q_{opt} der Bestförderstrom einer Laufradhälfte einzusetzen.

Mit wachsender spezifischer Drehzahl n_q werden die Laufräder mit zunächst noch radialem Austritt mehr und mehr halbaxial ("diagonal") und schließlich axial durchströmt (siehe Abb. 17); auch die Leitvorrichtungen an den radialen Gehäusen (z. B. Spiralgehäusen) werden immer voluminöser, solange eine Abführung der Strömung in radialer Richtung noch möglich ist. Schließlich kann die Strömung nur noch axial (z. B. in Rohrgehäusen) abgeführt werden.

Grobe Anhaltswerte: n _q	Laufrad
bis etwa 25	Radialrad (Hochdruckrad)
bis etwa 40	Radialrad (Mitteldruckrad)
bis etwa 70	Radialrad (Niederdruckrad)
bis etwa 160	Halbaxialrad (Schraubenrad, Diagonalrad)
von 140 bis 400	Axialrad (Propellerrad)

Tabelle 3: Spezifische Drehzahl n_a und Durchströmung

Weitere Laufradbauformen sind in Abb. 18 dargestellt:

- Sternräder werden in selbstansaugenden Pumpen eingesetzt.
- Peripheralräder erweitern den Bereich der spezifischen Drehzahl nach unten bis etwa n_q = 5 (eine bis zu 3-stufige Pumpenbauart ist möglich)
- bei noch kleineren spezifischen Drehzahlen sind rotierende (z. B. Exzenterschneckenpumpen mit n_q = 0,1 bis 3) oder oszillierende Verdrängerpumpen (Kolbenpumpen) zu bevorzugen.

Der Zahlenwert der spezifischen Drehzahl wird auch bei der Auswahl von Einflussfaktoren zur Umrechnung von Pumpenkennlinien bei der Förderung von zähen oder feststoffhaltigen Flüssigkeiten (siehe "Besonderheiten bei der Förderung zäher Flüssigkeiten" auf Seite 47 und "Besonderheiten bei der Förderung feststoffhaltiger Flüssigkeiten" auf Seite 58) benötigt.

In den angelsächsischen Ländern wird die spezifische Drehzahl mit "type number K" bezeichnet, in den USA mit N_s:

 $K = n_q / 52,9$ bzw. $N_s = n_q / 51,6$

Formel (6)

*) Aufsicht ohne Deckscheibe dargestellt

Abb. 18: Laufradbauformen für reine Flüssigkeiten

Abb. 19 erlaubt die graphische Ermittlung.

Abb. 19: Graphische Ermittlung der spezifischen Drehzahl n_{q}

Kennlinien der Pumpen

Im Gegensatz zu einer Verdrängerpumpe (z. B. Kolbenpumpe) liefert die Kreiselpumpe bei konstanter Drehzahl einen veränderlichen (mit abnehmender Förderhöhe H zunehmenden) Förderstrom Q. Sie besitzt daher die Fähigkeit der Selbstanpassung bei Veränderung der Anlagenkennlinie (siehe "Kennlinien der Anlage" auf Seite 26).

Weiter hängen vom Förderstrom Q der Leistungsbedarf P und damit auch der Wirkungsgrad η sowie der NPSH_{erf}-Wert (siehe "NPSH-Wert der Pumpe NPSH_{erf}" auf Seite 44) ab. Der Verlauf und Zusammenhang dieser Größen wird graphisch in den Kennlinien dargestellt, die von der spezifischen Drehzahl n_q geprägt werden und die somit das Betriebsverhalten einer Kreiselpumpe kennzeichnen (Kennlinienvergleich siehe Abb. 20, Beispiele siehe Abb. 21).

Abb. 20: Tendenzieller Einfluss der spezifischen Drehzahl n_q auf die Kennlinien von Kreiselpumpen (Nicht maßstäblich!)

Abb. 21: Drei Beispiele für Kennlinien von Pumpen verschiedener spezifischer Drehzahl

Abb. 22: Kennlinien mit steilem, flachem oder instabilem Verlauf

Die Förderhöhenkennlinie der Pumpe wird auch QH-Kurve genannt. Prinzipiell kann die QH-Kurve flach oder steil verlaufen. Bei einer steilen Kurve ändert sich der Förderstrom Q bei gleicher Förderhöhendifferenz ∆H weniger als bei flacher Kennlinie (Abb. 22). Das kann bei Förderstromregelungen von Vorteil sein.

QH-Kennlinien haben normalerweise einen stabilen Verlauf, das heißt eine mit zunehmendem Förderstrom Q abfallende Förderhöhe. Bei kleinen spezifischen Drehzahlen kann es vorkommen, dass im Bereich geringer Förderströme (also bei äußerster Teillast) die Förderhöhe H mit abnehmendem Förderstrom Q abfällt, also instabil ist (in Abb. 22 gestrichelt). Diese Kennlinienform muss nur dann vermieden werden, wenn sie mit der Anlagenkennlinie zwei Schnittpunkte bilden kann, insbesondere, wenn die Pumpe zum Parallelbetrieb bei Teillast vorgesehen ist (siehe unter "Parallelbetrieb von Kreiselpumpen" auf Seite 36) oder wenn sie im instabilen Bereich in einen Energie speichernden (= mit Gas oder Dampf gefüllten) Druckbehälter fördern soll; in allen anderen Fällen ist sie der stabilen Kennlinie gleichwertig. Wenn nicht anders angegeben, beziehen sich die Kennlinien auf die Dichte p und die kinematische Viskosität v von kaltem, entgastem Wasser.

Anlagendaten

Förderhöhe H_A der Anlage

Bernoulli-Gleichung

Die Bernoulli-Gleichung postuliert die Gleichwertigkeit der Energieformen mit geodätischen, statischen und dynamischen Förderhöhe H_A der Anlage setzt sich danach bei einer als reibungsfrei angenommenen Strömung aus folgenden drei Anteilen zusammen (siehe Bilder 8 und 9):

- H_{geo} (geodätische Förderhöhe) ist der Höhenunterschied zwischen saug- und druckseitigem Flüssigkeitsspiegel. Mündet die Druckleitung oberhalb des Flüssigkeitsspiegels, wird auf die Mitte des Ausflussquerschnittes bezogen (siehe Abb. 23B und Abb. 24B).
- $\left(\frac{(p_a p_e)}{(\rho \cdot g)}\right)$ ist die Differenz der über dem saug- und druckseitigen Flüssigkeitsspiegel liegenden Druckhöhen bei mindestens einem geschlossenen Behälter B, C oder E (siehe Abb. 23B, C, E und Abb. 24B, C, E).
- $\left(\frac{(v_a^2 v_e^2)}{2 \cdot g}\right)$ ist die Differenz der Geschwindigkeitshöhen in den Behältern. Bei einer realen Strömung müssen zu diesen Anteilen noch die Reibungsverluste (= Druckhöhenverluste) hinzugezählt werden:
- \sum H_v ist die Summe aller Druckhöhenverluste (= Strömungswiderstände in Rohrleitungen, Armaturen, Formstücken usw. in der Saug- und Druckleitung sowie der Ein- und Auslaufverluste (siehe "Druckhöhenverluste Hv

in geraden Rohrleitungen" auf Seite 16), die in der Praxis als Druckverluste in der Anlage bezeichnet werden.

Aus allen vier Anteilen ergibt sich die Förderhöhe H_A der Anlage:

$$\mathbf{H}_{A} = \mathbf{H}_{geo} + \frac{(\mathbf{p}_{a} - \mathbf{p}_{e})}{(\mathbf{p} \cdot \mathbf{g})} + \frac{(\mathbf{v}_{a}^{2} - \mathbf{v}_{e}^{2})}{2 \cdot \mathbf{g}} + \sum \mathbf{H}_{v}$$

Formel (7)

Formel (8)

Formel (9)

mit allen Förderhöhen H in m, allen Drücken p in Pa (1 bar = 100.000 Pa), allen Geschwindigkeiten v in m/s, der Dichte ρ in kg/m³, Fallbeschleunigung g = 9,81 m/s²

In der Praxis kann die Differenz der Geschwindigkeitshöhen häufig vernachlässigt werden. Dann vereinfacht sich die Formel (7) bei mindestens einem geschlossenen Behälter B, C oder E zu

$$H_{A} = H_{geo} + \frac{(P_{a} - P_{e})}{(\rho \cdot g)} + \sum H_{v}$$

und bei offenen Behältern A, und D zu

$$H_{A} = H_{aeo} + \sum H_{v}$$

- a offener Druckbehälter mit Rohrmündung unter dem Wasserspiegel
- B = geschlossener Druckbehälter mit freiem Auslauf aus dem Rohr
- C = geschlossener Druckbehälter mit Rohrmündung unter dem Wasserspiegel
- D = offener Saug- bzw. Zulaufbehälter
- E = geschlossener Saug- bzw. Zulaufbehälter
- v_a, v_e = (meistens vernachlässigbar geringen) Strömungsgeschwindigkeiten in den Behältern A und C an den Stellen a bzw.
 in den Behältern D und E an den Stellen e ; im Falle B ist v_a die nicht vernachlässigbare Auslaufgeschwindigkeit aus dem Rohrquerschnitt a .
- Abb. 23: Kreiselpumpenanlagen mit unterschiedlich ausgeführten Behältern im Saugbetrieb

Abb. 24: Kreiselpumpenanlagen mit unterschiedlich ausgeführten Behältern im Zulaufbetrieb

Druckverluste p_v durch Strömungswiderstände

Der Druckverlust p_v wird durch Wandreibung in allen Rohrleitungen und durch Widerstände in Armaturen, Formstücken usw. verursacht. Er wird aus dem von der Dichte ρ unabhängigen Druckhöhenverlust H_v berechnet nach

$$\mathbf{p}_{v} = \mathbf{\rho} \cdot \mathbf{g} \cdot \mathbf{H}_{v}$$

```
Formel (10)
```

```
Legende:

\rho = Dichte in [kg/m<sup>3</sup>]
```

```
g = Fallbeschleunigung = 9,81 m/s<sup>2</sup>
```

```
H<sub>v</sub> = Druckhöhenverlust in [m]
```

```
p_v = Druckverlust in [Pa] (1 bar = 100.000 Pa)
```

Druckhöhenverluste H_v in geraden Rohrleitungen

Für den Druckhöhenverlust einer Rohrströmung im geraden Rohr mit Kreisquerschnitt gilt allgemein

$$H_v = \lambda \cdot \frac{L}{d} \cdot \frac{v^2}{2 \cdot q}$$

Formel (11)

Legende:

- λ = Rohrreibungsbeiwert nach den Formel (12) bis (14),
- L = Rohrlänge in [m]
- d = Rohrinnendurchmesser in [m]
- v = Durchflussgeschwindigkeit in [m/s] (= $4Q / \pi d^2$ mit Q in [m³/s])

Bei nicht kreisrunden Rohrquerschnitten ist zu setzen:

g = Fallbeschleunigung 9,81 m/s²

Legende:

- A = durchströmter Querschnitt in m²
- U = benetzter Umfang des durchströmten Querschnitts A in [m], wobei in offenen Gerinnen die freie Oberfläche nicht als Umfang mitgerechnet wird.

Empfohlene Durchflussgeschwindigkeiten

	für Kaltwasser	für Heißwasser
Saugleitung	0,7 – 1,5 m/s	0,5 – 1,0 m/s
Druckleitung	1,0 – 2,0 m/s	1,5 – 3,5 m/s

Der Rohrreibungsbeiwert λ wurde experimentell ermittelt und ist in Abb. 25 dargestellt. Er ist nur abhängig vom Strömungszustand der Förderflüssigkeit und von der relativen Rauhigkeit d/k der durchflossenen Rohrleitung. Der Strömungszustand wird nach den Modellgesetzen durch die REYNOLDS-Zahl Re gekennzeichnet.

Für kreisrunde Rohre gilt:

$$Re = v \cdot \frac{d}{v}$$

Legende:

- v = Durchflussgeschwindigkeit in [m/s] (= 4Q/ π d² mit Q in $[m^3/s]$)
- d = Rohrinnendurchmesser in [m]
- = kinematische Viskosität in [m²/s]
 (für Wasser bei 20 °C genau 1,00 · 10–6 m²/s).

Bei nicht kreisrunden Rohrquerschnitten gilt wieder Formel (12) zur Ermittlung von d.

Für hydraulisch glatte Rohre (z. B. blankgezogene Metallrohre oder Kunststoffrohre z. B. aus PE oder PVC) oder bei laminarer Strömung kann λ auch rechnerisch ermittelt werden:

Im Bereich der laminaren Rohrströmung mit Re < 2320 ist unabhängig von der Rauhigkeit

 $\lambda = \frac{64}{Re}$

Formel (14)

Formel (13)

Bei turbulenter Strömung mit Re > 2320 können die Zusammenhänge in hydraulisch glatten Rohren mit einer empirischen Gleichung von ECK wiedergegeben werden (bis zu Re < 108 sind die Abweichungen kleiner als 1 %):

$$\lambda = \frac{0,309}{\left(\log \frac{Re}{7}\right)^2}$$
Formel (15)

Nach Abb. 25 ist der Rohrreibungsbeiwert λ noch von einem weiteren dimensionslosen Parameter, der relativen Rauhigkeit der Rohrinnenwand d/k, abhängig; darin ist k die gemittelte absolute Rauhigkeit (Körnung) der Rohrinnenwand, für die Anhaltswerte in Tabelle 4 angegeben sind. Zu beachten ist, dass sowohl d als auch k in der gleichen Dimension, z. B. mm, anzugeben sind!

Wie Abb. 25 zeigt, hängt λ oberhalb der Grenzkurve nur noch von der relativen Rohrrauhigkeit d/k ab. Nach einer empirischen Gleichung von MOODY kann man in diesem Bereich setzen:

$$\lambda = 0,0055 + \frac{0,15}{\sqrt[3]{\frac{d}{k}}}$$

Formel (16)

Abb. 25: Rohrreibungsbeiwert λ als Funktion der REYNOLDS-Zahl Re und der relativen Rauhigkeit $\frac{d}{k}$

												<u> </u>		A	A/	h	\sim	₽	\mathcal{A}	Ą
												1	v	-	•			<u> </u>		
Rohre aus	Zustand der	Innenwand	k [µm]	1		5	1	10	50			100	500		1.00		5.	000		10 ⁴
			Walzhaut															Т		Π
		nahtlos	gebeizt																	
			verzinkt																	
			Walzhaut															\square		
	neu	längsge-	bitumiert																	\square
Chabl		schweißt	galvanisiert																	
Stani			zementiert															\square		
		genietet																		-
		mäßig verre	ostet																	
	- 14	leicht verkr	ustet																	
	all	stark verkru	istet																	
		nach Reinig	lung																	
Asbestzement	neu																			
Ton (Drainage)	neu																			
Poton	nou	roh																		
beton	neu	mit Glattstr	ich																	
Schleuderheton	neu	roh																		
Schledderbeton	neu	mit Glattstr	ich																	
Stahlbeton	neu	mit Glattstr	ich																	
alle Betone	alt	mit Glattstr	ich																	
Metallrohre		blankgezog	len																	
Glas, Kunststoff																				
Gummischlauch	neu	nicht verspi	ödet																	
Holz	neu																			
	nach langem	n Wasserbetri	eb																	
Mauerwerk																				
			k [mm]	0,001	0,	005	0,	010	0,05	0		0,1	0,5		1,0		5	5,0		10

Tabelle 4: Mittlere Rauhigkeitserhebungen k (absolute Rauhigkeit) von Rohren in grober Abschätzung

Abb. 26: Druckhöhenverluste H_v für neue rohe Stahlrohre (k = 0,05 mm)

Abb. 27: Druckhöhenverluste Hv für hydraulisch glatte Rohre (k = 0) (Für Kunststoffrohre bei t = 10 °C mit Temperaturfaktor φ zu multiplizieren)

In Abb. 26 sind zum praktischen Gebrauch die Druckhöhenverluste H_v je 100 m gerader Stahlrohrleitung abhängig vom Förderstrom Q und vom Innendurchmesser d angegeben. Die Werte gelten nur für reines kaltes Wasser bzw. für Flüssigkeiten gleicher kinematischer Viskosität, bei voller Füllung der Rohrleitung und für absolute Rauhigkeiten der Rohrinnenwand von k = 0,05 mm, z. B. für neue nahtlose oder längsgeschweißte Stahlrohre (Innendurchmesser nach Tabelle 5 beachten).

Der Einfluss einer vergrößerten Wandrauhigkeit k soll nachstehend für einen häufig genutzten Bereich in Abb. 26 (Nennweite 50 bis 300, Strömungsgeschwindigkeit 0,8 bis 3,0 m/s) demonstriert werden: Dieses kräftig gerasterte Feld in Abb. 26 entspricht dem ebenso markierten Feld in Abb. 25 bei einer absoluten mittleren Rauhigkeit k = 0,05 mm. Bei einer 6-fach vergrößerten Rauhigkeit (leicht verkrustetes altes Stahlrohr mit k = 0,30 mm) liegen die Rohrreibungszahlen λ in Abb. 25 (und proportional dazu die Druckhöhenverluste H_v) in dem schwach gerasterten Feld nur um 25 – 60 % höher als zuvor. Bei Abwasserrohren muss die durch Verschmutzung bedingte erhöhte Rauhigkeit der Rohrinnenwand berücksichtigt werden (siehe "Einfluss von Verunreinigungen" auf Seite 46). Bei Rohren mit sehr starken Inkrustierungen kann der tatsächliche Druckhöhenverlust nur durch Versuche ermittelt werden. Abweichungen vom Solldurchmesser ändern den Druckhöhenverlust zudem beträchtlich, da der Rohrinnendurchmesser mit der 5. Potenz in die Formel (11) eingeht! (Z. B. erhöht ein um 5 % kleinerer Innendurchmesser den Druckhöhenverlust bereits um 30 %). Deswegen darf der Innendurchmesser bei Berechnungen nicht einfach durch die Nennweite ersetzt werden! Die Druckhöhenverluste H_v in Kunststoff- (z. B. PE oder PVC) oder blankgezogenen Metallrohren sind wegen der glatten Rohroberfläche sehr niedrig und in Abb. 27 dargestellt. Die so ermittelten Druckhöhenverluste gelten für Wasser mit einer Temperatur von 10 °C. Bei davon abweichenden Temperaturen sind sie bei Kunststoffrohren wegen der höheren Wärmedehnung mit einem in Abb. 27 angegebenen Temperaturfaktor zu multiplizieren. Für Abwasser oder nicht aufbereitetes Wasser sind wegen möglicher Ablagerungen Zuschläge von 20-30 % vorzusehen (siehe "Einfluss von Verunreinigungen" auf Seite 46).

	Außendurch- messer	nahtle [oses Rohr mm]	geschwe [r	eißtes Rohr nm]	nahtlos Gewicht	es Rohr : [kg/m]	geschwei Gewich	ßtes Rohr t [kg/m]
DN	D	s*	d	S**	d	Rohr	Wasser	Rohr	Wasser
15	21,3	2,0	17,3	1,8	17,7	0,952	0,235	0,866	0,246
20	26,9	2,0	22,9	1,8	23,3	1,23	0,412	1,11	0,426
25	33,7	2,3	29,1	2,0	29,7	1,78	0,665	1,56	0,692
32	42,4	2,6	37,2	2,3	37,8	2,55	1,09	2,27	1,12
40	48,3	2,6	43,1	2,3	43,7	2,93	1,46	2,61	1,50
50	60,3	2,9	54,5	2,3	55,7	4,11	2,33	3,29	2,44
65	76,1	2,9	70,3	2,6	70,9	4,71	3,88	5,24	3,95
80	88,9	3,2	82,5	2,9	83,1	6,76	5,34	6,15	5,42
100	114,3	3,6	107,1	3,2	107,9	9,83	9,00	8,77	9,14
125	139,7	4,0	131,7	3,6	132,5	13,4	13,6	12,1	13,8
150	168,3	4,5	159,3	4,0	160,3	18,2	19,9	16,2	20,2
200	219,1	6,3	206,5	4,5	210,1	33,1	33,5	23,8	34,7
250	273,0	6,3	260,4	5,0	263,0	41,4	53,2	33,0	54,3
300	323,9	7,1	309,7	5,6	312,7	55,5	75,3	44,0	76,8
350	355,6	8,0	339,6	5,6	344,4	68,6	90,5	48,3	93,1
400	406,4	8,8	388,8	6,3	393,8	86,3	118,7	62,2	121,7
500	508,0	11,0	486,0	6,3	495,4	135,0	185,4	77,9	192,7
600	610,0	12,5	585,0	6,3	597,4	184,0	268,6	93,8	280,2

*ab DN 32 identisch mit DIN 2448

**ab DN 25 identisch mit DIN 2458

Tabelle 5: Innendurchmesser d und Wandstärke s und Gewichte handelsüblicher Stahlrohre und ihrer Wasserfüllung nach ENV 10 220 (früher DIN ISO 4200)

Abb. 28: Schematische Darstellung der Armaturen-Bauformen nach Tabelle 6

Druckhöhenverluste H_v in Armaturen und Formstücken

Für die Druckhöhenverluste \mathbf{H}_{v} in Armaturen und Formstücken gilt

$$|_{v} = \zeta \cdot \frac{v^{2}}{2 \cdot g}$$

Formel (17)

Н

q

- ζ = Verlustbeiwert
- v = Durchflussgeschwindigkeit in einer f
 ür die Druckh
 öhenverluste charakteristischen Querschnittsfl
 äche A (z. B. am Stutzen) in m/s
 - = Fallbeschleunigung 9,81 m/s²

Die Tabelle 6 bis
Tabelle 8 und die Abb. 28 bis Abb. 30 geben Auskunft über die einzelnen Verlustbei
werte ζ in Armaturen und Form-

stücken bei Betrieb mit kaltem Wasser.

Die in der Tabelle 6 angegebenen Minimal- und Maximalwerte schließen die Zahlenwerte aus der wichtigsten Fachliteratur ein und gelten für Armaturen, die gleichmäßig angeströmt werden und voll geöffnet sind. Die im Nachlauf einer Armatur auf einer Rohrlänge von 12 x DN entstehenden Verluste infolge Vergleichmäßigung der gestörten Rohrströmung sind gemäß Richtlinie VDI/VDE 2173 in den ζ-Werten enthalten. Abhängig von den Zu- und Abströmbedingungen, den Ausführungsvarianten und den Entwicklungszielen (entweder billige oder energiesparende Armatur) können die Werte z. T. sehr stark streuen. Anmerkung 1: Bei Abzweigstücken nach Tabelle 9 und Übergangsstücken nach Tabelle 8 ist zu unterscheiden zwischen den irreversiblen Druckverlusten (= Druckminderungen) siehe Formel (18) einerseits und den reversiblen Druckänderungen der reibungsfreien Strömung gemäß der Bernoulli-Gleichung siehe Formel (19) andererseits (siehe unter "Förderhöhe HA der Anlage" auf Seite 15).

Bei beschleunigten Strömungen (z. B. Rohrverengungen) ist ($p_2 - p_1$) immer negativ, bei verzögerten Strömungen (z. B. Rohrerweiterungen) immer positiv. Wenn die gesamte Druckänderung als arithmetische Summe aus p_v und ($p_2 - p_1$) errechnet wird, sind die nach Formel (18) ermittelten Druckverluste immer negativ anzusetzen.

Fußnoten zur Tabelle 6

1) Ist der engste Absperrdurchmesser d $_{\epsilon}$ kleiner als der Durchmesser der Anschlussnennweite DN, sind die Widerstandsbeiwerte ζ um (DN/d $_{\epsilon}$)^x mit x = 5 bis 6 zu vergrößern

2) Bei nur teilweiser Öffnung (d. h. kleinen Strömungsgeschwindigkeiten) steigen die Verlustbeiwerte auf die "max"-Werte an. Mit steigender Durchflussgeschwindigkeit v fallen die Verlustbeiwerte ab etwa nach der Beziehung = 3/v. Bauformen siehe Abb. 28.

Art der Arm	atur	Bau- form	Verlus	tbeiwei	⁺t ζ bei	= NO																
		5	15	20	25	32	40	50	65	80	100	125	150	200	250	200	100	00 6(00 80	0 1.00	4	Anmerkung
Flachschiebe	r min	•	0,1	↓																♥ 0,1		
$(d_{E} = DN)$	max	-	0,65	0,6	0,55	0,5	0,5	0,45	0,4	0,35	0,3	ł								♥ 0,3		
Rundschiebe	ar min	ſ						0,25	0,24	0,23	0,22	0,21	0,19 (0,18	0,17 (,16 0	,15 0,	13 0,	12 0,1	1 0,11		a _E < UN sierie
$(d_{E} = DN)$	max	V						0,32	0,31	0,30	0,28	0,26	0,25	0,23	0,22 (,20 0	,19 0,	18 0,	16 0,1	5 0,14	-+	
Hähne	min	۲ ا	0,10	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,05	0,05 (0,04	0,03 (,03 0	,02					bei d _E < DN
(dE = DN)	max	n	0,15	↓												1	,15				2	; = 0,4 bis 1,1
Klappen	min	I					0,90	0,59	0,38	0,26	0,20	0,14	0,12 (0,09	0,06					• 0,06		
PN 2,5 - 10	max	•					1,20	1,00	0,80	0,70	0,62	0,56	0,50 (0,42	0,40 (,37 0	,33 0,	33 0,	33 0,3	0 0,28	~	
Klappen	min	4						2,04	1,80	1,55	1,30	1,08	0,84 (0,75	0,56 (,48 0	,40 ▲			♦ 0,40	0	
e PN 16 – 25	max							2,50*	2,30*	2,10*	1,90*	1,70* 1	,50* 1	,30 1	,10 0,	90 0,	83 0,7	76 0,7	1 0,6	7* 0,63	* *	uch bei PN 40
tur Ventile,	min	5			6,0	\		6,0														
geschmiede	t max				6,8	↓		6,8														
Ventile,	min	U I	3,0	ţ											^	0,1					pe	i Optimierung
degossen	max	D	6,0	↓												0,					ζ = 2	bis 3 erreichbar
JA	min	r	0,3	0,4	0,6	0,6	1,0	1,1	↓ ↓				1	1,1								
compactver	max	-	0,3	0,9	1,9	↓ ▼		1	1,9	2,2	2,2	2,3	2,5	2,5								
- litter L	min	c	2,0	↓												~ ↑	0					
Eckventlie	max	x	3,1	V		3,1	3,4	3,8	4,1	4,4	4,7	5,0	5,3	5,7	5,0 6	6,3	,6					
C	min	c	1,5	ţ												5,						
SUITAGE	max	ת	2,6	↓												9						
	min	¢	0,6	ţ												►	9					
FreiTlussven	max	2	1,6	ţ												- •	,e					
Mondand	min	÷	0,8	ţ								↑	0,8									
INFILIDIALIVE	max	=	2,7	ţ								1	2,7									
Rückschlagv	entile, min	- 1	3,0	\downarrow										3,0								
Geradsitz	max	<u>1</u>	6,0	↓								1	6,0									
Rückschlagv	entile, min	, 1	3,2	↓				3,2	3,7	5,0	7,3	4,3				E,					ab	o DN 125 axial
er axial	max	2	3,4	3,4	3,5	3,6	3,8	4,2	5,0	6,4	8,2	4,6				1,6						erweitert
de Rückschlagv	entile, min	14	2,5	2,4	2,2	2,1	2,0	1,9	1,7	1,6	1,5				↓	٦,						
Schrägsitz	max	:	3,0	↓											▲	0,						
Fußventile	min	- 15						1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,4)4	7,0) (6	(,1) (5	,5) (4,	5) (4,0	0	bei Gruppen-
njj	max			,		1		3,0	, ,							0,					0	
ück Bückschlag-	min	16	0,5	,			0,5	0,4								,4	m			0,3	× 	Lappen onne Hebel und
Klappen	max	2	3,0																	3,0		Gewichte ²⁾
Hydrostop, 1	/ = 4 m/s							0,9			3,0		3,0	2,5	2,5	,2	,2					
Hydrostop, 1	/ = 3 m/s							1,8			4,0		4,5	4,0	4,0	80 M	4					
Hydrostop, V	/ = 2 m/s							5,0			6,0		8,0	7,5	6,5 6	0,0	0					
Filter		18						2,8	↓							8					. <u>c</u>	ı gereinigtem
Siebe		19						1,0	Ļ						•	o,						Zustand

Tabelle 6: Verslustbeiwerte ζ in Armaturen verschiedener Bauarten (bezogen auf die Strömungsgeschwindigkeit im Anschlussquerschnitt

21

	α	1!	5°	30	0°	4	5°	60° 90° a glatt rauh glatt rauh 35 0,50 0,70 1,15 1 34 0,19 0,46 0,21 0 19 0,12 0,26 0,14 0 16 0,10 0,20 0,10 0 - 3 - 3 -)°		
						Oberf	läche				
		glatt	rauh	glatt	rauh	glatt	rauh	glatt	rauh	glatt	rauh
Rohrbogen	ζ für R = 0	0,07	0,10	0,14	0,20	0,25	0,35	0,50	0,70	1,15	1,30
Ronrbogen	ζ für R = d	0,03	-	0,07	-	rauh glatt rauh glatt rauh glatt rauh 0,20 0,25 0,35 0,50 0,70 1,15 1,30 - 0,14 0,34 0,19 0,46 0,21 0,51 - 0,09 0,19 0,12 0,26 0,14 0,30 - 0,08 0,16 0,10 0,20 0,10 0,20					
	ζ für R = 2·d	0,03	-	0,06	_	0,09	0,19	glatt raun glatt raun 0,50 0,70 1,15 1,30 0,19 0,46 0,21 0,51 0,12 0,26 0,14 0,30 0,10 0,20 0,10 0,20 3 - 3 -	0,30		
	ζ für R ≥ 5·d	0,03	-	0,06	-	0,08	0,16	0,10	0,20	0,10	0,20
Kniestücke geschweißt	Anzahl der Rundnähte	-	-	_	_	2	_	3	_	3	-
	ζ	-	-	-	-	0,15	-	0,20	latt rauh glatt ra ,50 0,70 1,15 1, ,19 0,46 0,21 0, ,12 0,26 0,14 0, ,10 0,20 0,10 0, 3 - 3 3 ,20 - 0,25	_	

Tabelle 7: Verlustbeiwerte $\boldsymbol{\zeta}$ in Rohrbögen und Kniestücken

Form	d D	0,5	0,6	0,7	0,8	0,9
$\begin{array}{c} \downarrow \\ \downarrow $		0,56	0,41	0,26	0,13	0,04
ll für _{α = 8°}		0,07	0,05	0,03	0,02	0,01
α = 15°		0,15	0,11	0,07	0,03	0,01
$\alpha = 20^{\circ}$	_	0,23	0,17	0,11	0,05	0,02
	ζ≈	4,80	2,01	0,88	0,34	0,11
IV für 20° < α < 40° v_1 D α d d		0,21	0,10	0,05	0,02	0,01

Tabelle 8: Verlustbeiwerte $\boldsymbol{\zeta}$ in Übergangsstücken

Anmerkung 2: Die Verlustbeiwerte ζ_a für den Abzweigstrom Q_a bzw. ζ_d für den durchfließenden Strom $Q_d = Q - Q_a$ beziehen sich auf die Stutzengeschwindigkeit des Gesamtstromes Q.

Formel (18)

Formel (19)

Formel (20)

Wegen dieser Definition sind negative Zahlenwerte für ζ_a oder ζ_d möglich; sie bedeuten **Druckgewinn** statt **Druckverlust**. Nicht zu verwechseln mit den reversiblen **Druckänderungen** aufgrund der Bernoulli-Gleichung, siehe Anmerkung 1.

Häufig wird zur Berechnung von Druckverlusten in Armaturen bei Wasserförderung anstelle des Verlustbeiwertes ζ noch der sogenannte k_v-Wert benutzt:

$$\mathbf{p}_{v} = \left(\frac{\mathbf{Q}}{\mathbf{k}_{v}}\right)^{2} \cdot \frac{\mathbf{\rho}}{1000}$$

Legende:

p_v = Druckverlust [bar]

Q = Volumenstrom [m³/h]

 ρ = Dichte des Wassers [kg/m³]

gebrochen	ς –	0,25	0,55	0,20	0,05
			TURNIN D		
	Fürδ=	75		60	45
Einlaufkante gebrochen	ζ =	0,6		0,7	0,8

Auslaufstücke:	
ζ = 1	nach einem genügend langen geraden Rohrstück bei annähernd gleichförmiger Geschwindigkeit im Austrittsquerschnitt
ζ = 2	bei stark ungleichförmiger Geschwindigkeit z. B. unmittelbar nach Krümmer, Armatur usw.

Durchflussmessgeräte:

 ζ ist auf die Geschwindigkeit v beim Durchmesser D bezogen

d/D =	0,30	0,40	0,50	0,60	0,70	0,80
m = (d/D) ² =	0,09	0,16	0,25	0,36	0,49	0,64
Kurzventurirohr						
ζ≈	21	6	2	0,7	0,3	0,2
Normblende						
ζ≈	300	85	30	12	4,5	2

Wasserzähler (Volumenmesser) ζ≈10

Bei Hauswasserzählern ist für die Nennbelastung ein Druckverlust von max. 1 bar festgelegt, der praktisch nicht unterschritten wird.

Abzweigstücke: (Abzweig mit gleicher Nennweite) (siehe Anmerkung 2)								
$Q_a/Q =$		0,2	0,4	0,6	0,8	1		
Q _d Q _a Q	ζ _a ≈ ζ _d ≈	-0,4 0,17	0,08 0,30	0,47 0,41	0,72 0,51	0,91 _		
$Q \xrightarrow{\qquad \qquad } Q_d$	$\zeta_a \approx \zeta_d \approx$	0,88 -0,08	0,89 -0,05	0,95 0,07	1,10 0,21	1,28 _		
$Q_d \xrightarrow{45^\circ}_{Q_a} Q$	$\zeta_a \approx \zeta_d \approx$	-0,38 0,17	0 0,19	0,22 0,09	0,37 -0,17	0,37 -		
	$\zeta_a \approx \zeta_d \approx$	0,68 -0,06	0,50 -0,04	0,38 0,07	0,35 0,20	0,48 -		

Zusammengesetzte Rohrbögen (Krümmer):

Der ζ -Wert des einfachen 90°-Krümmers ist beim Zusammenbau zu Mehrfachkrümmern der nachfolgenden Art nicht zu verdoppeln, sondern nur mit dem jeweils angegebenen Faktor zu multiplizieren, um den Verlust des Mehrfachkrümmers zu erhalten.

Dehnungsausg	leicher:
--------------	----------

Wellrohrausgleicher mit Leitrohr ohne Leitrohr	ζ = 0,3 ζ = 2,0	
Glattrohr-Lyrabogen	ζ = 0,6 bis 0,8	
Faltenrohr-Lyrabogen	ζ = 1,3 bis 1,6	
Wellrohr-Lyrabogen	ζ = 3,2 bis 4	

Tabelle 9: Verlustbeiwerte ζ in Formstücken

Abb. 29: Einfluss der Ausrundung von konkaver und konvexer Seite auf den Verlustbeiwert ζ von Krümmern mit quadratischem Querschnitt

Der k_v-Wert (in der Einheit m³/h) ist derjenige Volumenstrom, der sich bei der Durchströmung einer Absperr- oder Regelarmatur mit kaltem Wasser bei einem Druckverlust p_v = 1 bar einstellt; er gibt somit den Zusammenhang zwischen dem Druckverlust p_v in bar und dem Volumenstrom Q in m³/h an. In der Form k_{vs} gilt er für die volle Öffnung der Armatur.

Formel (21)

Umrechnung für kaltes Wasser:

 $\zeta \approx 16 \cdot \frac{d^4}{k_v^2}$

Legende:

d = Bezugsdurchmesser (Nennweite) der Armatur [cm]

Abb. 30: Verlustbeiwerte ζ von Drosselklappen, Ventilen und Schiebern in Abhängigkeit vom Öffnungswinkel bzw. vom Öffnungsgrad

Abb. 31: Anlagenkennlinie H_a mit statischem und dynamischem Anteil

Kennlinien der Anlage

Die Anlagenkennlinie ist die graphische Darstellung der in der Anlage erforderlichen Anlagenförderhöhe H_A über dem Förderstrom Q. Sie setzt sich zusammen aus statischen und dynamischen Anteilen (Abb. 31).

Die statischen Anteile bestehen aus den beiden vom Förderstrom unabhängigen Teilen geodätische Förderhöhe H_{geo} und der Druckhöhendifferenz $\frac{(P_a)^-P_e}{\rho \cdot g}$ zwischen Ein- und Austrittsbehälter der Anlage. Die Druckhöhendifferenz entfällt, wenn beide Behälter offen sind.

Die dynamischen Anteile bestehen aus dem mit wachsendem Förderstrom Q quadratisch ansteigenden Druckhöhenverlust H_v (siehe "Druckverluste p_v durch Strömungswiderstände" auf Seite 16) und der Differenz der Geschwindigkeitshöhen $\frac{v_{sa}^2 - v_e^2}{2g}$ im Ein- und Austrittsquerschnitt der Anlage.

Zur Berechnung dieser Parabel genügen ein Punkt bei Q = 0 und ein Punkt bei Q > 0.

Bei hintereinandergeschalteten Rohrleitungen (Serienschaltung) werden die einzeln berechneten Anlagenkennlinien H_{A1} , H_{A2} usw. über Q aufgetragen und die jeweiligen Förderhöhen miteinander addiert zu einer gemeinsamen Anlagenkennlinie $H_A = f(Q)$.

Bei verzweigten Rohrleitungen werden die Anlagenkennlinien H_{A1} , H_{A2} usw. der einzelnen Rohrstränge ab dem Verzweigungspunkt (bzw. bis zum Verzweigungspunkt) jede für sich berechnet und über Q aufgetragen; von allen parallel laufenden Strängen werden dann für jede Förderhöhe H_A die jeweiligen Förderströme Q_1 , Q_2 usw. zu einer gemeinsamen Anlagenkennlinie $H_A = f(Q)$ miteinander addiert. Die beiden Abschnitte vor und nach dem Verzweigungspunkt müssen dann wie bei der Hintereinanderschaltung zusammengefasst werden.

Auswahl der Pumpe

Hydraulische Auslegung

Die zur Auswahl der Pumpengröße benötigten Daten Förderstrom Q und Förderhöhe H des gewünschten Betriebspunktes werden aus der Anlagenkennlinie als bekannt vorausgesetzt, die Netzfrequenz ist auch vorgegeben.

Damit lassen sich aus einem Kennfeld der Verkaufsunterlage (auch Sammelkennfeld genannt, siehe Abb. 33 oder Abb. 34) Pumpenbaugröße, Pumpendrehzahl und ggfs. die Stufenzahl z auswählen. Die weiteren Kenngrößen der ausgesuchten Pumpe, wie Pumpenwirkungsgrad η , Leistungsbedarf P, NPSH_{erf} und Abdrehdurchmesser D_r können dann aus der entsprechenden Einzelkennlinie ermittelt werden (Beispiel siehe Abb. 32).

Wenn keine besonderen Gründe für eine andere Wahl vorliegen, ist der Betriebspunkt in die Nähe von Q_{opt} (= Förderstrom im Punkt besten Wirkungsgrades) zu legen. Die Grenzen von Q_{min} und Q_{max} (z. B. wegen des Schwingungsverhaltens, wegen Geräuschen sowie Radial- oder Axialkräften) sind in den baureihenspezifischen Verkaufsunterlagen angegeben oder werden auf Rückfragen genannt [1]. Abschließend sind die NPSH-Verhältnisse nach zu überprüfen (siehe "Saug- und Zulaufverhältnisse" auf Seite 41.

Eine mehrstufige Pumpe wird nach den gleichen Vorgehensweisen ausgelegt; das Kennfeld enthält als zusätzliche Information neben den Baugrößen noch die jeweilige Stufenzahl (Abb. 34).

Bei hintereinandergeschalteten Pumpen (Serienbetrieb) werden die Förderhöhen H_1 , H_2 usw. der einzelnen Pumpenkennlinien (gegebenenfalls nach Abzug der zwischen ihnen liegenden Verluste) zu einer gemeinsamen Kennlinie H = f(Q) addiert.

Bei parallel betriebenen Pumpen werden die einzelnen Kennlinien H₁, H₂ usw. = f(Q) zunächst um die Druckhöhenverluste H_{v1}, H_{v2} usw. bis zum Knotenpunkt reduziert (Berechnung von H_v siehe "Druckhöhenverluste H V in" auf Seite 20) und über Q aufgetragen; dann werden die Förderströme Q der reduzierten Kennlinien miteinander zur gemeinsamen Kennlinie einer "virtuellen" Pumpe addiert. Diese arbeitet dann im Knotenpunkt mit der Kennlinie H_A der restlichen Anlage zusammen.

Abb. 32: Vollständige Kennlinie einer Kreiselpumpe

Abb. 33: Sammelkennfeld einer Spiralgehäusepumpen-Baureihe bei n = 2900 min–1 (1. Zahl = Nennweite des Druckstutzens, 2. Zahl = Laufradnenndurchmesser)

Abb. 34: Sammelkennfeld einer Baureihe mehrstufiger Pumpen bei n = 2900 min⁻¹

Mechanische Auslegung

Bei der Auslegung der Pumpe sind neben den hydraulischen auch mechanische Gesichtspunkte zu berücksichtigen. Sie betreffen z. B.

- den Einfluss des maximalen Pumpenenddruckes und der Temperatur des Fördermediums auf bestimmte Einsatzgrenzen
- die Überprüfung möglicher Schwingungen und Geräuschemissionen
- die Werkstoffauswahl hinsichtlich der Korrosions- und Verschleißbedingungen unter Beachtung der Festigkeitsanforderungen und Temperaturgrenzen.

Diese und ähnliche Anforderungen sind oft branchen- oder sogar kundenspezifisch und müssen unter Hinzuziehung der Erzeugnisdokumentation "[1] Produktspezifische Dokumentation (KSB-Verkaufsunterlagen)" oder der Fachabteilung behandelt werden.

Auswahl des Elektromotors – Bemessung der Motorleistung

Bei Betrieb einer Kreiselpumpenanlage muss mit Abweichungen von der Nenndrehzahl und mit Volumenstromschwankungen und deshalb auch mit Veränderungen des Betriebspunktes (siehe "Betriebspunkt" auf Seite 34) gerechnet werden, die insbesondere bei steilen Leistungskennlinien (siehe Abb. 20 und Abb. 21c) einen gegenüber den Ausgangsdaten unter Umständen vergrößerten Leistungsbedarf P der Pumpe bewirken. Deshalb rechnet man in der Praxis bei der Festlegung der Motorgröße mit Sicherheitszuschlägen, die z. B. vom Besteller oder durch Technische Regelwerke vorgeschrieben werden, siehe Abb. 35.

Die von bestimmten Verbänden vorgeschriebenen Zuschläge sind der jeweiligen Baureihendokumentation zu entnehmen [1] oder durch Kundenspezifikationen vorgegeben.

Bei energiesparenden Regelungsverfahren (z. B. Drehzahlregelungen) müssen die maximal möglichen Leistungsspitzen beachtet werden. Wird eine Pumpe für eine Förderflüssigkeit ausgelegt, deren Dichte kleiner als die von Wasser ist, muss gegebenenfalls (z. B. bei der Prüfung bzw. Abnahme auf dem Prüffeld) die Dichte von Wasser bei der Leistungsermittlung zugrunde gelegt werden.

Abb. 35: Leistung der Antriebsmaschine in Abhängigkeit von der Auslegungsleistung der Pumpe im Betriebspunkt. Beispiel nach ISO 9905, 5199 und 9908 (Class I, II u. III)

Abb. 36: Typische Wirkungsgrade η und Leistungsfaktoren cos φ von Normmotoren IP 54 bei 50 Hz über der Motornennleistung P

Abb. 37: Verlauf von Wirkungsgrad η und Leistungsfaktor cos φ von Normmotoren IP 54 über der relativen Motorbelastung P/P_N

Schutzarten für Elektromotoren zum Schutz gegen Berührung, Fremdkörper und Wasser

IP-Code

Die Gehäuseschutzart wird mit dem IP-Code in folgender Weise angezeigt:				
Code-Buchstaben (International Protection)	IP			
Erste Kennziffer (Ziffern 0 bis 6 oder X bei Fehlanzeige)	Х			
Zweite Kennziffer (Ziffern 0 bis 6 oder X bei Fehlanzeige)	Х			

Wahlweise Buchstaben A, B, C, D und H, M, S, W nur für besondere Zwecke.

Bedeutung der Ziffern:		Bedeutung für den Schutz des Betriebsmittels gegen Eindringen von festen Fremdkörpern	Bedeutung für den Schutz von Personen gegen Zugang zu gefährlichen Teilen mit		
	0	(nichtgeschützt)	(nicht geschützt)		
	1	> 50 mm Durchmesser	Handrücken		
	2	> 12,5 mm Durchmesser	Finger		
Erste Stelle	3	> 2,5 mm Durchmesser	Werkzeug		
	4	> 1,0 mm Durchmesser	Draht		
	5	staubgeschützt	Draht		
	6	staubdicht	Draht		
		gegen Eindringen von Wasser mit schädlichen Wirkungen			
Zweite Stelle	0	(nicht geschützt)			
	1	senkrechtes Tropfen			
	2	Tropfen (15° Neigung)			
	3	Sprühwasser (60° Neigung)			
	4	Spritzwasser (alle Richtungen)			
	5	Strahlwasser			
	6	starkes Strahlwasser (schwere See)			
	7	zeitweiliges Untertauchen			
	8	dauerndes Untertauchen			

Tabelle 10: Schutzarten für Elektromotoren nach EN 60 529 und DIN/VDE 0530 T.5 zum Schutz gegen Berührung, Fremdkörper und Wasser.

Richtwerte für die maximal zulässige Schaltzahlen Z für Elektromotoren

Aufstellung des Motors		trocken	nass (Tauchmotoren)			
		Zulässige Anläufe Z pro Stunde für Elektromotoren				
Motoren bis	4 kW	15	30			
Motoren bis	7,5 kW	15	30			
Motoren bis	11 kW	12	10			
Motoren bis	30 kW	12	10			
Motoren über	30 kW	≤ 10	10			

Tabelle 11: Zulässige Anläufe Z pro Stunde für Elektromotoren

Die typischen Wirkungsgrade η und Leistungsfaktoren cos φ von Normmotoren IP 54 bei 50 Hz sind in Abb. 36 angegeben, der Verlauf von Wirkungsgrad η und Leistungsfaktor cos φ über der relativen Motorbelastung P/P_N in Abb. 37.

Tabelle 10 nennt die Schutzarten für Elektromotoren zum Schutz gegen Berührung, Fremdkörper und Wasser.

Die besondere Erwärmung von Elektromotoren und auch von elastischen Kupplungen beim Anfahren sowie die vorzeitige Abnützung der Schaltschütze begrenzen die Schalthäufigkeit. **Richtwerte für die maximal zulässigen Schaltzahlen Z** siehe Tabelle 10, falls nichts anderes vorgegeben wird.

Tauchmotorpumpen (Abb. 10 bis Abb. 13) sind fertigmontierte Aggregate, deren Motoren nicht besonders ausgelegt werden müssen [7]. Ihre elektrischen Daten gehen aus der Baureihenbeschreibung hervor. Der Motor ist innen mit Luft gefüllt und kann dank einer meist doppelt wirkenden und mit Paraffinöl gesperrten Wellendichtung unter Wasser arbeiten.

Auswahl des Elektromotors – Motoren für wellendichtungslose Pumpen

Zur Förderung von aggressiven, giftigen, leicht flüchtigen oder kostbaren Flüssigkeiten werden vor allem in der chemischen und petrochemischen Industrie oft wellendichtungslose Pumpen, das heißt Magnetkupplungs- (Abb. 9) und Spaltrohrmotorpumpen (Abb. 14 und Abb. 15), eingesetzt.

Eine Magnetkupplungspumpe wird durch ein primäres Magnetfeld angetrieben, das außerhalb ihres druckfesten Gehäuses umläuft und Sekundärmagnete innerhalb des Gehäuses synchron mitnimmt [12]. Der Primärteil wird dann an einen normalen trockenen Antriebsmotor gekuppelt.

Die Laufräder von Spaltrohrmotorpumpen sitzen dagegen direkt auf der Motorwelle, so dass der Läufer in der Förderflüssigkeit umläuft, von der die Statorwicklung durch ein Spaltrohr getrennt wird [7]. Diese wellendichtungslosen Pumpenaggregate werden generell mit Hilfe von EDV-Angebotsprogrammen ausgelegt, wozu die nachstehenden Gesichtspunkte beachtet werden müssen:

- Der Rotor läuft in der Förderflüssigkeit, deren kinematische Zähigkeit v bekannt sein muss, weil sie die Reibungsverluste und damit die Motorleistung beeinflusst (siehe "Die Fließkurve" auf Seite 47).
- Metallische Spalttöpfe bzw. Spaltrohre (z. B. aus 2.4610) verursachen Wirbelstromverluste, die die Motorleistung vergrößern; nichtmetallische Spalttöpfe in Magnetkupplungspumpen aber nicht.
- Der Verdampfungsdruck der Förderflüssigkeit muss bekannt sein, damit Lagerschäden infolge Trockenlauf bei Verdampfung vermieden werden können. Überwachungsgeräte, die vor Trockenlauf warnen, sind zu empfehlen.
- Besondere Eigenschaften der Flüssigkeit, wie Feststoffgehalt, Neigung zum Erstarren oder zur Polimerisation oder zur Bildung von Krusten und Belägen, müssen bei der Auslegung bekannt sein.

Auch Unterwassermotorpumpen (U-Pumpen, meistens zur Wasserversorgung aus Brunnen) sind fertigmontierte Aggregate, deren Motoren nicht besonders ausgelegt werden müssen (Abb. 16). Bei ihnen sind Läufer und Wicklung vom Wasser benetzt [7]. Ihre elektrischen Daten und ihre zulässige Schalthäufigkeit gehen aus der Baureihenbeschreibung hervor [1].

Abb. 38: Anlaufkurve für Strom I und Drehmoment T von Kurzschlussläufern bei Stern-Dreieck-Schaltung (Υ = Stern-Schaltung; Δ = Dreieck-Schaltung; P = Pumpe)

Auswahl des Elektromotors – Anfahrverhalten

Mit der Leistung P und der Drehzahl n ist das Drehmoment T_p der Pumpe, das von der Wellenkupplung übertragen wird, direkt verbunden. Dieses Drehmoment hat beim Anfahren der Kreiselpumpe einen in Abb. 38 dargestellten fast parabolischen Verlauf über der Drehzahl [10].

Das vom Asynchronmotor angebotene Drehmoment muss dagegen größer sein, damit der Läufer bis zur Betriebsdrehzahl beschleunigt werden kann. Dieses Motordrehmoment hat zusammen mit der Spannung eine direkte Auswirkung auf die vom Motor aufgenommene Stromstärke und diese wiederum auf die Erwärmung der Motorwicklung; darum ist man bestrebt, durch Begrenzung der Anlaufzeit und/oder der Stromstärke unzulässige Erwärmungen des Motors zu vermeiden [2] (siehe auch Tabelle 12):

Im Falle der Direkteinschaltung (sofort volle Netzspannung auf den noch stehenden Motor) steht das gesamte Anlaufmoment von Anfang an zur Verfügung und das Aggregat erreicht nach kürzester Zeit die Betriebsdrehzahl.

Für den Motor ist dieses Anlaufen am günstigsten, aber der gegenüber dem Nennstrom auf das 4 bis 8-fache gestiegene Anlaufstrom belastet insbesondere bei größeren Motoren das Netz und kann bei benachbarten Geräten störende Spannungseinbrüche verursachen. Deshalb sind bei öffentlichen Niederspannungsnetzen (380 V) die Bestimmungen der Elektro-Versorgungs-Unternehmen (EVU) über den Direktanlauf ab Leistungen von 5,5 kW zu beachten.

Ist das Netz für den Direktanlauf nicht geeignet, kann man den Motor mit verminderten Spannungen nach folgenden Methoden starten:

Die Stern-Dreieck-Einschaltung ist die gebräuchlichste, weil kostengünstigste Art, den Einschaltstrom zu verringern. Dazu ist es erforderlich, dass der Motor im Betrieb im Dreieck geschaltet ist, so dass die Motorwicklungen dann an der Netzspannung (z. B. 400 V) liegen. Während des Anlaufs aber werden die Wicklungen im Stern geschaltet, wodurch die Spannung an den Wicklungen um den Faktor 0,58 gegenüber der Netzspannung verringert wird. Dies vermindert den Anlaufstrom und das -moment auf ein Drittel der Werte bei Direktanlauf mit der Folge, dass der Anlaufvorgang länger dauert. Der Motor läuft nun in der Sternschaltung hoch über das Kippmoment hinaus bis zur höchstmöglichen Drehzahl im Punkt B' in Bild 23. Dann erfolgt die Umschaltung auf die Dreieckstufe, und der Motor beschleunigt weiter auf die Nenndrehzahl. Während der Umschaltzeit von etwa 0,1 s bleibt der Motor stromlos und die Drehzahl fällt ab.

Bei Aggregaten mit kleinem Trägheitsmoment (Spaltrohr- und U-Motoren) kann dieser Drehzahlabfall so groß sein, dass nach dem Umschalten auf die Dreieckstufe doch wieder der fast ungeminderte Einschaltstrom wie bei der Direkteinschaltung fließt.

- Mit einem Anlasstransformator wird ebenfalls die Spannung an den Motorwicklungen verringert, jedoch ist der Grad der Absenkung im Gegensatz zur Stern-Dreieck-Schaltung wählbar. Z. B. sinken das Anfahrmoment und der Netzstrom bei einer 70 %igen Anzapfung des Transformators auf 49 % der Werte bei direkter Einschaltung. Von Vorteil ist auch, dass bei der Umschaltung keine stromlose Phase auftritt.
- Beim Softstarter wird die Spannung an den Motorwicklungen nach dem Dimmerprinzip stufenlos elektronisch verändert. Dadurch ist eine beliebige Anpassung von Anfahrzeit und Anlaufstrom im Rahmen der zulässigen Betriebsgrenzen des Motors (Verlustwärme durch Schlupf!) möglich. Außerdem sind hier besondere Grenzen für die Schaltzahlen (im Gegensatz zu Tabelle 11) zu beachten [1].
- Beim Einsatz von Frequenzumrichtern (in der Regel für Stelloder Regelbetrieb) kann ein sanfter Anlauf ohne Zusatzaufwand verwirklicht werden. Dazu werden die Ausgangsfrequenz und -spannung des Frequenzumrichters (siehe "Förderstromregelung durch Drehzahlverstellung" auf Seite 35) kontinuierlich von einem Minimalwert auf den gewünschten Wert hochgefahren. Der Nennstrom des Motors wird dabei nicht überschritten.

Anlauf- verfahren	Bauart	Stromaufnahme (Netzbelastung)	Hoch- laufzeit	Motoranlauf- erwärmung	Mechan. Belastung	Hydraul. Belastung	Kosten- relation	Empfohlene Motorbauarten	Anmerkungen
Direktanlauf	Schütz (mechanisch)	$4 - 8 \cdot I_{_{N}}$	ca. 0,5 – 5 s	hoch	sehr hoch	sehr hoch	1	alle	seitens der EVU's meist begrenzt auf 4 kW
Stern-Drei- eck-Anlauf	Schütz- Kombination (mechanisch)	1/3 der Werte von Direktanlauf	ca. 3 – 10 s	hoch	sehr hoch	sehr hoch	1,5 – 3	alle; bei Spaltrohr- und U-Motoren tritt beim Umschalten ein größerer Drehzahlabfall auf	bei Moto- ren > 4 kW üblicherweise von den EVU's gefordert
Teilspannungs- anlauf	Anlasstrans- formator mit zumeist 70 %iger Anzapfung	0,49 mal der Wert des Direktan- laufes	ca. 3 _ 10 s	hoch	hoch	hoch	5 – 15	alle	Beim Umschalten keine strom- lose Phase (Anwendung zugunsten Sanftanlauf rückläufig)
Sanftanlauf	Softstarter (Leistungselek- tronik)	frei einstellbar; üblich: 3 · I _N	ca. 10 – 20 s	hoch	gering	gering	5 – 15	alle	An- und Abfahren stufenlos über Rampen auf jeweili- gen Lastfall einstellbar: Keinne hydraulischen Stöße
Frequenzan- lauf	Frequen- zumrichter (Leistungselek- tronik)	1 · I _N	0 – 60 s	gering	gering	gering	ca. 30	alle	Für reines An- und Abfahren zu teuer. Bes- ser geeignet für Stell- und Regelbetrieb

Tabelle 12: Anlassmethoden für Asynchronmotoren

Betriebsverhalten und Regelung

Betriebspunkt

Beim Betrieb einer Kreiselpumpenanlage ergibt sich der Betriebspunkt durch den Schnittpunkt der Pumpenkennlinie (siehe unter "Kennlinien der Pumpen" auf Seite 13) mit der Anlagenkennlinie (siehe unter "Kennlinien der Anlage" auf Seite 26). Dadurch werden der Förderstrom Q und die Förderhöhe H bestimmt. Eine Änderung dieses Betriebspunktes erfordert die Veränderung entweder der Anlagenkennlinie oder der Pumpenkennlinie.

Eine Anlagenkennlinie kann bei der Förderung von Wasser nur verändert werden

- durch Änderung der Strömungswiderstände (z. B. durch Verstellen eines Drosselorgans, durch Einbau einer Lochblende oder einer Bypassleitung, durch Umbau oder Inkrustierung der Rohrleitungen) oder aber
- durch Veränderung des statischen Förderhöhenanteils
 (z. B. durch eine andere Höhe des Wasserspiegels oder des Behälterdruckes).

Eine Pumpenkennlinie kann verändert werden

- durch eine Verstellung der Drehzahl (siehe unter "Förderstromregelung durch Drehzahlverstellung" auf Seite 35)
- durch Hinzuschalten oder Abschalten einer parallel oder in Serie betriebenen Pumpe (siehe unter "Parallelbetrieb von Kreiselpumpen" auf Seite 36 oder "Serienbetrieb (Hintereinanderschaltung)" auf Seite 37)
- bei Pumpen mit radialen Laufrädern durch Verändern ihres Außendurchmessers (siehe unter "" auf Seite 37)
- bei Pumpen mit halbaxialen Laufrädern (Schraubenrädern) durch Vorschalten bzw. Verstellen eines Vordrallreglers (siehe unter "Förderstromregelung mittels Vordrall" auf Seite 39)
- bei Propellerpumpen durch Verstellen des Einstellwinkels der Propellerschaufeln (siehe unter "Förderstromregelung / -änderung

durch Schaufelverstellung" auf Seite 40)

Hinweis:

Die Wirkungen dieser Maßnahmen zur Kennlinienänderung können nur für kavitationsfreien Betrieb vorausgesagt werden (siehe unter "Saug- und Zulaufverhältnisse" auf Seite 41).

Förderstromregelung durch Drosseln

Die Änderung des Förderstromes Q durch Verstellen einer Drosselarmatur ist zwar die einfachste Methode sowohl für die einmalige Anpassung als auch für die ständige Regelung, da sie die geringsten Investitionen erfordert, zugleich ist sie aber auch die energieunfreundlichste, weil sie Strömungsenergie irreversibel in Wärmeenergie überführt. Abb. 39 veranschaulicht diesen Vorgang: Durch gezieltes Vergrößern der Anlagenwiderstände (z. B. durch Eindrosseln einer Armatur auf der Pumpendruckseite) wird die dadurch veränderte Anlagenkennlinie H_{A1} steiler und geht in H_{A2} über. Bei konstanter Pumpendrehzahl verlagert sich der Betriebspunkt B1 auf der Pumpenkennlinie nach B2 zu kleinerem Förderstrom. Die Pumpe erzeugt dabei eine größere Förderhöhe, als für die Anlage erforderlich wäre; dieser Förderhöhenüberschuss wird in der eingedrosselten Armatur abgebaut, wobei die hydraulische Energie irreversibel in Wärmeenergie umgewandelt und mit dem Förderstrom abgeführt wird. Dieser Verlust ist noch akzeptabel, wenn der Regelbereich nur klein oder die Regelung nur selten erforderlich ist. Die erzielte Leistungseinsparung ist im unteren Teil des Bildes dargestellt und ist - verglichen mit dem großen Förderhöhenüberschuss - verhältnismäßig bescheiden.

Das gleiche gilt im Prinzip auch für den Einbau einer festen, scharfkantigen Blendenscheibe in die Druckleitung, was bei kleinen Leistungen oder kurzen Betriebszeiten noch zu vertreten ist. Dabei geht man zur Berechnung des erforderlichen Bohrungsdurchmessers d_{Bl} der Drossel von der abzudrosselnden Förderhöhendifferenz ΔH aus nach der Formel

Formel (22)

$$\mathsf{d}_{\mathsf{B}\mathsf{I}} = \mathsf{f} \cdot \sqrt{\frac{\mathsf{Q}}{\sqrt{\mathsf{g}} \cdot \Delta \mathsf{H}}}$$

Legende:

d_{RI} = Bohrungsdurchmesser der Lochblende [mm]

- f = Drosselbeiwert nach Abb. 40
- Q = Förderstrom mit m³/h
- g = Fallbeschleunigung 9,81 m/s²
- △H = abzudrosselnde Differenz der Förderhöhe H [m]

Da das Öffnungsverhältnis $(d_{Bl}/d)^2$ vorab geschätzt werden muss, ist eine Iteration bei diesem Rechenverfahren nötig (zweckmäßig ist eine graphische Auftragung vom berechneten über dem geschätzten Bohrungsdurchmesser d_{Bl} , so dass nach zwei Iterationen zielgenau interpoliert werden kann, siehe "Rechenbeispiel 7: Lochblende").

Förderstromregelung durch Drehzahlverstellung

Bei verschiedenen Drehzahlen n hat dieselbe Kreiselpumpe verschiedene Kennlinien, die durch das Ähnlichkeitsgesetz (Affinitätsgesetz) miteinander verbunden sind.

Sind bei der Drehzahl n_1 die Kennlinien H und P über Q bekannt, errechnen sich alle Punkte der Kennlinien bei n_2 nach den folgenden Formeln:

$\mathbf{Q}_2 = \mathbf{Q}_1 \cdot \frac{\mathbf{n}_2}{\mathbf{n}_1}$	Formel (23)
$\mathbf{H}_{2} = \mathbf{H}_{1} \cdot \left(\frac{\mathbf{n}_{2}}{\mathbf{n}_{1}}\right)^{2}$	Formel (24)
$\mathbf{P}_2 = \mathbf{P}_1 \cdot \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)^3$	Formel (25)

Formel (25) gilt nur solange, wie sich der Wirkungsgrad η nicht mit abnehmender Drehzahl n vermindert. Mit Änderung der Drehzahl verschiebt sich auch der Betriebspunkt (siehe unter "Betriebspunkt" auf Seite 34). Abb. 41 zeigt für mehrere Drehzahlen QHKurven, die je einen Schnittpunkt mit der Anlagenkennlinie H_{A1} besitzen. Der Betriebspunkt B wandert auf dieser Anlagenkennlinie zu kleineren Förderströmen, wenn die Drehzahl entsprechend verkleinert wird.

Sofern die Anlagenkennlinie wie im Beispiel H_{A1} eine Ursprungsparabel ist, fällt die Förderhöhe H nach Formel (24) bei Halbierung der Drehzahl auf ein Viertel, die Antriebsleistung P nach Formel (25) auf ein Achtel der Ausgangswerte. Der untere Teil der Abb. 41 zeigt das Ausmaß der Einsparung ΔP_1 im Vergleich zur Drosselung.

Abb. 39: Veränderung des Betriebspunktes und Leistungseinsparung beim Drosseln von Pumpen mit steigender Leistungskennlinie

Abb. 40: Lochblende und deren Drosselbeiwerte f

Abb. 41: Betrieb einer drehzahlverstellbaren Pumpe bei unterschiedlichen Anlagenkennlinien H_{A1} und H_{A2}.
 (Leistungseinsparungen ΔP₁ und ΔP₂ bei Halblast jeweils im Vergleich zur Drosselung)

Ist die Anlagenkennlinie im Beispiel H_{A2} dagegen eine Parabel mit großem statischen Anteil $H_{A2 \text{ stat}}$, so muss beachtet werden, dass sie mit der Pumpenkennlinie bei abgesenkter Drehzahl unter Umständen keinen Schnittpunkt, also keinen Betriebspunkt mehr liefert; die unteren Bereiche der Drehzahlverstellung sind hier also nutzlos und können eingespart werden. Die möglichen Leistungseinsparungen D_{p2} sind in diesem Falle bei gleichen Förderströmen Q geringer als bei der Anlagenkennlinie H_{A1} , wie der untere Teil des Diagrammes zeigt [4]. Der Leistungsgewinn gegenüber der Drosselung ist umso geringer, je größer der statische Anteil H_A stat (also je kleiner der dynamische Anteil $H_{A \text{ dyn}}$) ist.

Drehzahländerung bedeutet meistens Frequenzänderung, was bei der Auswahl der Antriebsmotoren beachtet werden muss. Der Aufwand dafür ist nicht gering, amortisiert sich aber bald bei Pumpen, die häufig in Betrieb sind und bei kleinem $H_{A \text{ stat}}$ oft auf Teillast geregelt werden [8]. Dieses gilt besonders für Pumpen in Heizungsanlagen.

Parallelbetrieb von Kreiselpumpen

Für den Fall, dass der benötigte Anlagenförderstrom Q im Betriebspunkt nicht mit einer Pumpe erreicht werden kann, ist es möglich, zwei oder mehrere Pumpen parallel über je ein Rückschlagorgan in die gemeinsame Druckleitung fördern zu lassen (Abb. 42). Die Betriebsweise von parallelgeschalteten Pumpen ist einfacher, wenn deren Nullförderhöhe Ho untereinander gleich groß ist, was bei identischen Pumpen immer gewährleistet ist. Sind die Nullförderhöhen Ho dagegen nicht einander gleich, so gibt die niedriger liegende Nullförderhöhe auf der gemeinsamen QH-Kennlinie immer den Mindestförderstrom Q_{min} an, bis zu dem ein Parallelbetrieb nicht möglich ist, weil in diesem Betriebsbereich das Rückschlagorgan der Pumpe mit kleinerem H_o von der größeren Förderhöhe der anderen Pumpe zugedrückt wird. Bei solchem Parallelbetrieb muss aber beachtet werden, dass nach dem Abschalten einer von zwei gleichen Kreiselpumpen (Abb. 42) der Förderstrom Q_{einzel} der weiterlaufenden Pumpe nicht auf die Hälfte von Q_{parallel} zurückgeht, sondern größer als die Hälfte bleibt. Diese Pumpe fährt dann sofort unter Umständen im Überlastbereich im Betriebspunkt B_{einzel}, was bei der Überprüfung der NPSH-Werte (siehe unter "Saug- und Zulaufverhältnisse" auf Seite 41) und der Antriebsleistung (siehe unter "Wirkungsgrad und Leistungsbedarf P an der Pumpenwelle" auf Seite 09) berücksichtigt werden muss. Der Grund für dieses Verhalten liegt im parabolischen Verlauf der Anlagenkennlinie H₄. Aus dem gleichen Grund verdoppelt beim umgekehrten Vorgang das Hinzuschalten einer zweiten gleichgroßen Kreiselpumpe nicht den Förderstrom Q_{einzel} der bereits laufenden
Pumpe, sondern vergrößert ihn nur auf weniger als das Doppelte, also

$$Q_{parallel} < 2 \cdot Q_{einzel}$$

Formel (26)

Dieser Effekt beim Ab- oder Hinzuschalten ist umso stärker, je steiler die Anlagenkennlinie oder je flacher die Pumpenkennlinie ist. Solange aber beide Pumpen I und II laufen, ist der Gesamtförderstrom $Q_{parallel}$ immer die Summe von Q_I und Q_{II} (siehe Abb. 42), also

$$Q_{parallel} = Q_{l} + Q_{l}$$

Formel (27)

Zur Berechnung der Kennlinien bei Parallelbetrieb siehe unter "Auswahl des Elektromotors –Bemessung der Motorleistung" auf Seite 29. Das Hinzu- oder Abschalten einzelner parallelbetriebener Pumpen ist zwar energiesparend, erlaubt aber nur eine stufenweise Förderstromregelung. Zur stufenlosen Regelung muss deswegen beispielsweise mindestens eine der beteiligten Pumpen mit einer Drehzahlverstellung oder die gemeinsame Druckleitung mit einer Drosselarmatur ausgerüstet werden [4].

Wenn Kreiselpumpen mit starren Drehzahlen und instabiler Kennlinie (Abb. 22) parallel betrieben werden sollen, kann es beim Hinzuschalten einer solchen Pumpe zu Problemen kommen, falls die Betriebsförderhöhe H_1 der laufenden Pumpe größer ist als die Nullpunktförderhöhe H_0 (das ist die Förderhöhe bei Q = 0) der zuzuschaltenden Pumpe; diese ist dann nicht in der Lage, den Gegendruck, der auf ihrer Rückschlagklappe liegt, zu überwinden (Abb. 43, Anlagenkennlinie H_{A1}). Pumpen mit instabilen Kennlinien sind für einen derartigen Teillastbetrieb nicht geeignet. (Bei einer tiefer liegenden Anlagenkennlinie H_{A2} würden sie aber einwandfrei zuzuschalten sein, weil jetzt die Betriebsförderhöhe H_2 der laufenden Pumpe niedriger ist als die Nullpunktförderhöhe H_0 der zuzuschaltenden Pumpe).

Serienbetrieb (Hintereinanderschaltung)

Beim Serienbetrieb (Reihenbetrieb) sind die Pumpen hintereinandergeschaltet, so dass sich die Förderhöhen der laufenden Pumpen bei gleichem Förderstrom addieren. Dabei ist aber zu beachten, dass der Enddruck der ersten Pumpe zugleich der Zulaufdruck der folgenden Pumpe ist, was bei Bemessung ihrer Wellendichtung und ihrer Gehäusefestigkeit berücksichtigt werden muss. Deswegen wird ein solcher Bedarf im allgemeinen (nicht beim hydraulischen Feststofftransport, siehe "Besonderheiten bei der Förderung feststoffhaltiger Flüssigkeiten" auf Seite 58) durch mehrstufige Pumpen gedeckt, bei denen sich das oben genannte Wellendichtungsproblem nicht stellt.

Abb. 42: Parallelbetrieb von 2 gleichen Kreiselpumpen mit stabiler Kennlinie

Abb. 43: Parallelbetrieb von 2 gleichen Kreiselpumpen mit instabiler Kennlinie

Abb. 44: Ausdrehkontur eines Laufrades mit halbaxialem Austritt

Abb. 45: Parallelbetrieb von 2 gleichen Kreiselpumpen mit instabiler Kennlinie

Abdrehen von Laufrädern

Soll die Förderleistung einer radialen oder halbaxialen Kreiselpumpe bei konstanter Drehzahl bleibend verringert werden, muss ihr Laufradaußendurchmesser D verkleinert werden; dabei soll die maximale Durchmesserverkleinerung so begrenzt werden, dass sich die Schaufeln bei radialer Blickrichtung noch gegenseitig überdecken. In den Kennlinienblättern (Abb. 32) sind die Pumpenkennlinien in der Regel für mehrere Abdrehdurchmesser D [mm] dargestellt.

Laufräder aus harten Werkstoffen, wie sie für den hydraulischen Feststofftransport verwendet werden, oder aus Edelstahlblech sowie Einschaufelräder (Abb. 57) und Stern- und Peripheralräder (Abb. 18) können nicht abgedreht werden (gleiches gilt auch für das Hinterfeilen siehe unter "Hinterfeilen von Laufradschaufeln" auf Seite 39).

In mehrstufigen Pumpen werden in der Regel nur die Schaufeln, nicht aber die Radseitenwände der Laufräder abgedreht; man spricht hier vom Ausdrehen statt Abdrehen. Unter Umständen können bei einer mehrstufigen Pumpe anstelle des Ausdrehens das Lauf- und das Leitrad einer der Stufen ausgebaut und durch eine sogenannte Blindstufe (das sind zwei konzentrische zylindrische Hülsen zur Strömungsführung) ersetzt werden.

Laufräder mit nicht zylindrischem Austritt werden nach Angaben in den Kennlinienblättern ab- oder ausgedreht (z. B. wie in Abb. 44).

Wenn der Durchmesser nur geringfügig verkleinert werden soll, lässt er sich mit einer Faustformel berechnen. Eine exakte Berechnung ist dagegen nicht möglich, weil geometrische Ähnlichkeit hinsichtlich der Schaufelwinkel und der Austrittsbreiten beim Abdrehen von Laufrädern nicht mehr gewährleistet werden kann. Für den Zusammenhang zwischen Q, H und dem (ggfs. zu mittelnden) Laufradaußendurchmesser D gilt die folgende Faustformel

$$\left(\frac{\mathsf{D}_{\mathsf{t}}}{\mathsf{D}_{\mathsf{r}}}\right)^{\mathsf{2}} \thickapprox \frac{\mathsf{Q}_{\mathsf{t}}}{\mathsf{Q}_{\mathsf{r}}} \thickapprox \frac{\mathsf{H}_{\mathsf{t}}}{\mathsf{H}_{\mathsf{r}}}$$

Formel (28)

Legende:

Index t = Zustand vor der Reduzierung des Laufradaußendurchmessers Index r = Zustand nach der Reduzierung

woraus sich zur Bestimmung des (gemittelten) Abdrehdurchmessers ergibt

$$\mathbf{D}_{t} \approx \mathbf{D}_{t} \cdot \sqrt{\frac{\mathbf{Q}_{t}}{\mathbf{Q}_{t}}} \approx \mathbf{D}_{t} \cdot \sqrt{\frac{\mathbf{H}_{r}}{\mathbf{H}_{t}}}$$

Formel (29)

Die Daten zur Bestimmung des Abdrehdurchmessers können nach Abb. 45 ermittelt werden, indem man im QH-Diagramm (mit linearer Teilung!) durch den gewünschten neuen Betriebspunkt B_r eine Ursprungsgerade zieht (Achtung bei Kennlinien mit unterdrücktem Nullpunkt!), die die vorhandene Kennlinie für den vollen Laufraddurchmesser D_t in B_t schneidet. Dabei erhält man die Wertepaare für Q und H mit den Indices t und r, die mit der Formel (29) den ungefähren gewünschten Abdrehdurchmesser D_r ergeben.

Das Verfahren nach ISO 9906 ist etwas genauer, aber auch umständlicher durch Einbeziehung des (gemittelten) Durchmessers D₁ der Laufradeintrittskante (Index 1), gültig für n_q < 79 und bis zu einer Durchmesserreduzierung um < 5%, solange der Schaufelwinkel und die Laufradbreite konstant bleiben. Dann gilt (mit den Bezeichnungen nach Abb. 44 und Abb. 45):

$\frac{(\mathbf{D}_r^2 - \mathbf{D}_1^2)}{(\mathbf{D}_t^2 - \mathbf{D}_1^2)} = \frac{\mathbf{H}_r}{\mathbf{H}_t} = \left(\frac{\mathbf{Q}_r}{\mathbf{Q}_t}\right)^2$	Formel (30)
$\frac{(\mathbf{D}_{r}^{2} - \mathbf{D}_{1}^{2})}{(\mathbf{D}_{t}^{2} - \mathbf{D}_{1}^{2})} = \frac{\mathbf{H}_{r}}{\mathbf{H}_{t}} = \left(\frac{\mathbf{Q}_{r}}{\mathbf{Q}_{t}}\right)$	Formel (30

Eine Lösung ist hier nur möglich, wenn D_1 bekannt ist und wenn durch den reduzierten Betriebspunkt B_r (mit H_r und Q_r) nicht wie in Abb. 45 eine Gerade, sondern eine Parabel $H \sim Q_2$ gelegt wird, die die für D_r geltende QH-Linie in einem anderen Punkt B_r (mit anderen H_r und Q_r) schneidet.

Hinterfeilen von Laufradschaufeln

Eine geringfügige, bleibende Vergrößerung der Pumpenförderhöhe im Bestpunkt (bis zu 4 – 6 %) kann man bei radialen Laufrädern durch das Hinterfeilen der rückwärts gekrümmten Beschaufelung, also das Anschärfen der Laufschaufelenden auf der konkaven Seite, erreichen (Abb. 46); die Förderhöhe bei Q = 0 bleibt dabei unverändert. Diese Methode ist für letzte Nachbesserungen geeignet.

Förderstromregelung mittels Vordrall

Bei Rohrgehäusepumpen mit halbaxialen Laufrädern (Schraubenrädern) kann man die Kennlinie durch Verändern des Dralles in der Laufradzuströmung beeinflussen. Derartige Vordrallregler werden häufig als Bauelemente zur Förderstromregelung eingesetzt. Die verschiedenen Kennlinien sind dann in den Kennlinienblättern mit Angabe der Reglerstellung eingetragen (Abb. 47).

Abb. 46: Hinterfeilte Schaufeln eines radialen Laufrades

Abb. 48: Kennfeld einer Axialpumpe mit Laufschaufelverstellung, $n_{\rm q} \approx 200$

Abb. 49: Kennlinien und Betriebspunkte einer Pumpe mit fallender Leistungskennlinie bei der Förderstromregelung mittels Bypass (bei einer Pumpe mit radialem Laufrad würde die Leistungskennlinie nach rechts ansteigen und diese Art der Regelung eine Mehrleistung verursachen, s. Bild 5)

Förderstromregelung / -änderung durch Schaufelverstellung

Die Kennlinien von Propellerpumpen lassen sich durch Verstellen der Propellerschaufeln verändern. Diese Einstellung kann fest verschraubt sein oder mittels eines Verstellgetriebes im Betrieb zur Förderstromregelung benutzt werden. In den Kennlinienblättern sind die Einstellwinkel bei den verschiedenen Kennlinien eingetragen (Abb. 48).

Förderstromregelung mittels Bypass

Die Anlagenkennlinie kann durch Drosseln einer Armatur steiler gemacht werden, sie kann aber auch durch Öffnen eines Bypasses in der Druckleitung flacher gemacht werden, siehe Abb. 49. Der Betriebspunkt verschiebt sich in diesem Falle von B₁ zum größeren Förderstrom bei B₂; der regelbare Bypassförderstrom kann wieder in den Saugbehälter zurückgeführt werden, wird also nicht genutzt.

Diese Art der Förderstromregelung ist aus energetischen Gesichtspunkten nur dann sinnvoll, wenn die Leistungskennlinie mit steigendem Förderstrom abfällt, was bei großen spezifischen Drehzahlen (bei Schraubenrädern oder Propellern) der Fall ist $(P_1 > P_2)$. Mit der Vordrall- oder Schaufelverstellung gibt es aber in diesem Bereich Regelungsmöglichkeiten, die noch wirtschaftlicher arbeiten. Der Aufwand für Bypass und Regelarmatur ist nicht gering [4].

Diese Methode ist auch zum Schutz von Pumpen gegen Betrieb in unzulässigen Teillastbereichen (siehe Betriebsgrenzen in den Abb. 20 und Abb. 21c sowie Abb. 47 und Abb. 48) geeignet.

Saug- und Zulaufverhältnisse

NPSH-Wert der Anlage NPSH

(NPSH = Net Positive Suction Head)

Der NPSHvorh-Wert ist die vorhandene Druckdifferenz zwischen dem Gesamtdruck in der Mitte des Pumpeneinlaufstutzens und dem Verdampfungsdr uck p_D (auch Sättigungsdruck genannt), gemessen als Druckhöhendifferenz [m]. Er ist gewissermaßen ein Maß für die Verdampfungsgefahr an dieser Stelle und wird nur durch die Daten der Anlage und der Förderflüssigkeit bestimmt. Die Verdampfungsdrücke von Wasser und anderen Flüssigkeiten sind in Tabelle 14 und in Abb. 50 als Funktion der Temperatur dargestellt.

NPSH_{vorh} bei Saugbetrieb

Bei Saugbetrieb (Abb. 23) ist die Pumpe oberhalb des saugseitigen Flüssigkeitsspiegels aufgestellt. Der NPSH_{vorh}-Wert kann aus den Zustandsdaten im Saugbehälter (Index e) wie folgt berechnet werden (siehe Abb. 51):

$$NPSH_{vorh} = \frac{p_e + p_b - p_D}{\rho \cdot g} + \frac{v_e^2}{2 \cdot g} - H_{v,s} - H_{s,geo} \pm s' \qquad \text{Formel (31)}$$

Legende:

- p = Überdruck im Saugbehälter in N/m²
- p_b = Luftdruck [N/m²] (Tabelle 13: Höheneinfluss beachten!)
- p_p = Verdampfungsdruck in N/m² (in Tabelle 14 absoluter Druck!)
- ρ = Dichte [kg/m³]
- g = Fallbeschleunigung 9,81 m/s²
- $v_e^{}$ = Strömungsgeschwindigkeit im Saugbehälter [m/s]
- $H_{v,s}$ = Druckhöhenverlust in der Saugleitung [m]
- H_{s, geo} = Höhendifferenz zwischen Flüssigkeitsspiegel im Saugbehälter und Mitte Pumpensaugstutzen [m]
- Höhendifferenz zwischen Mitte Pumpensaugstutzen und Mitte Laufradeintritt [m]

Bei kaltem Wasser und offenem Behälter (Abb. 51 links) in Meereshöhe vereinfacht sich diese Formel (mit Einheiten wie oben) für die Praxis genau genug zu

$$NPSH_{vorb} = 10 - H_{vs} - H_{sgeo} \pm s$$

Die Korrektur durch s' ist nur nötig, wenn die Mitte des Laufradeintritts (der für die Kavitationsgefahr maßgebend ist) nicht mit der Mitte des Saugstutzens (= Bezugsebene) auf gleicher Höhe liegt.

Abb. 50: Verdampfungsdruck p_{D} verschiedener Flüssigkeiten als Funktion der Temperatur t

Höhe über N.N. [m]	Luftdruck pb [mbar]	Siedetemperatur [°C]
0	1013	100
200	989	99
500	955	98
1.000	899	97
2.000	795	93
4.000	616	87
6.000	472	81

Tabelle 13: Einfluss der topographischen Höhe über N.N. auf die Jahresmittelwerte des Luftdrucks und auf die jeweilige Siedetemperatur (1 mbar = 100 Pa)

t [°C]	p, [bar]	ρ [kg/m³]	v [mm²/s]	t [°C]	p, [bar]	ρ [kg/m³]	v [mm²/s]
0	0.00611	999.8	1.792	51	0,12960	987.7	
1	0,00656	999,9		52	0,13613	987,2	
2	0,00705	999,9		53	0,14293	986,7	
3	0,00757	1.000.0		54	0,15002	986.2	
4	0,00812	1.000,0		55	0,15741	985,7	
5	0,00872	1.000,0		56	0,16509	985,2	
6	0,00935	999,9		57	0,17312	984,7	
7	0,01001	999,9		58	0,18146	984,3	
8	0,01072	999,8		59	0,19015	983,7	
9	0,01146	999,7		60	0,19920	983,2	0,474
10	0,01227	999,6	1,307				
				61	0,2086	982,6	
11	0,01311	999,5		62	0,2184	982,1	
12	0,01401	999,4		63	0,2285	981,6	
13	0,01496	999,3		64	0,2391	981,1	
14	0,01597	999,2		65	0,2501	980,5	
15	0,01703	999,0		66	0,2614	980,0	
16	0.01816	998.8		67	0,2733	979,4	
17	0.01936	998.7		68	0.2856	978.8	
18	0.02062	998,5		69	0,2983	978,3	
19	0.02196	998.4		70	0,3116	977.7	0.413
20	0,02337	998,2	1,004			·	
				71	0,3253	977,1	
21	0.02485	997.9		72	0,3396	976.6	
22	0.02642	997.7		73	0,3543	976.0	
23	0.02808	997.5		74	0,3696	975,4	
24	0.02982	997.2		75	0,3855	974,8	
25	0,03167	997,0		76	0,4019	974,3	
26	0,03360	996,7		77	0,4189	973,7	
27	0,03564	996,4		78	0,4365	973,0	
28	0,03779	996,1		79	0,4547	972,5	
29	0,04004	995,8		80	0,4736	971,8	0,365
30	0,04241	995,6	0,801				
				81	0,4931	971,3	
31	0,04491	995,2		82	0,5133	970,6	
32	0,04753	994,9		83	0,5342	969,9	
33	0,05029	994,6		84	0,5557	969,4	
34	0,05318	994,2		85	0,5780	968,7	
35	0,05622	993,9		86	0,6010	968,1	
36	0,05940	993,5		87	0,6249	967,4	
37	0,06274	993,2		88	0,6495	966,7	
38	0,06624	992,9		89	0,6749	966,0	
39	0,06991	992,6		90	0,7011	965,3	0,326
40	0,07375	992,2	0,658				
				91	0,7281	964,7	
41	0,07777	991,8		92	0,7561	964,0	
42	0,08198	991,4		93	0,7849	963,3	
43	0,08639	991,0		94	0,8146	962,6	
44	0,09100	990,6		95	0,8452	961,9	
45	0,09582	990,2		96	0,8769	961,2	
46	0,10085	989,8		97	0,9095	960,4	
47	0,10612	989,3		98	0,9430	959,8	
48	0,11162	988,9		99	0,9776	959,0	
49	0,11736	988,5		100	1,0132	958,3	0,295
50	0,12335	988,0	0,553				

Tabelle 14: Verdampfungsdruck p_p , Dichte ρ und kinematische Viskosität n des Wassers bei Sättigung als Funktion der Temperatur t

t [°C]	p _p [bar]	ρ [kg/m³]	v [mm²/s]	t [°C]
102	1,0878	956,8		
104	1,1668	955,5		255
106	1,2504	954,0		260
108	1,3390	952,6		
110	1,4327	951,0		265
				270
112	1,5316	949,6		
114	1,6361	948,0		275
116	1,7465	946,4		280
118	1,8628	944,8		
120	1,9854	943,1	0,2460	285
				290
122	2 ,1144	941,5		
124	2 ,2503	939,8		295
126	2 ,3932	938,2		300
128	2 ,5434	936,5		
130	2 ,7011	934,8		305
				310
132	2 ,8668	933,2		
134	3 ,0410	931,4		315
136	3 ,2224	929,6		320
138	3 ,4137	927,9		
140	3 ,614	926,1	0,2160	325
				330
145	4,155	921,7		
150	4,760	916,9		340
				350
155	5,433	912,2		360
160	6,180	907,4	0,1890	370
				374,
165	7,008	902,4		
170	7,920	897,3		Dichte o vor
175	8,925	892,1		
180	10,027	886,9	0,1697	
				_
185	11,234	881,4		
190	12,553	876,0		
195	13,989	870,3		
200	15,550	864,7	0,1579	
205	17,245	858,7		-
210	19,080	852,8		
215	21,062	846,6		
220	23,202	840,3	0,1488	
225	25,504	834,0		
230	27,979	827,3		-
235	30,635	820,6		
240	33,480	813,6	0,1420	
		000-		-
245	36,524	806,5		
250	39,776	799.2		

t [°C]	p _p [bar]	ρ [kg/m³]	v [mm²/s]
255	43,247	791,8	
260	46,944	784,0	0,1339
265	50,877	775,9	
270	55,055	767,9	
275	59,487	759,4	
280	64,194	750,7	0,1279
285	69,176	741,6	
290	74,452	732,3	
295	80,022	722,7	
300	85,916	712,5	0,1249
305	92,133	701,8	
310	98,694	690,6	
315	105,61	679,3	
320	112,90	667,1	0,1236
325	120,57	654,0	
330	128,64	640,2	
340	146,08	609,4	0,1245
350	165,37	572,4	
360	186,74	524,4	0,1260
370	2 10,53	448,4	
374,2	22 5,60	32 6,0	0,1490

Dichte ρ von Meerwasser = 1030 ÷ 1040 kg/m³

Abb. 51: Ermittlung von NPSH_{vorh} bei Saugbetrieb für horizontal oder vertikal aufgestellte Pumpe

Abb. 52: Ermittlung von $\text{NPSH}_{\text{vorh}}$ bei Zulaufbetrieb für horizontal oder vertikal aufgestellte Pumpe

Abb. 53: Experimentelle Ermittlung von NPSH $_{\rm erf}$ für das Kriterium ΔH = 0,03 $H_{\rm kavitationsfrei}$

In Abb. 51 muss bei der linken Pumpe daher $H_{s \text{ geo}}$ um s' "verlängert" werden (d. h. gleiche Vorzeichen von $H_{s \text{ geo}}$ und s'!). Falls s' nicht bekannt ist, genügt meistens eine Abschätzung nach dem Maßbild der Pumpe.

NPSH_{vorb} bei Zulaufbetrieb

Bei Zulaufbetrieb (Abb. 52) ist die Pumpe im Gegensatz zum Saugbetrieb unterhalb des Flüssigkeitsspiegels aufgestellt.

Die Formel (31) und (32) verändern sich dann mit $+H_{z \text{geo}}$ anstelle $-H_{s \text{geo}}$ zu

$$NPSH_{vorh} = \frac{(p_e + p_b + p_b)}{\rho \cdot g} + \frac{v_e^2}{2 \cdot g} - H_{v,s} + H_{zgeo} \pm s' \qquad \text{Formel (33)}$$

Legende:

H_{z, geo} = Höhendifferenz zwischen Flüssigkeitsspiegel im Zulaufbehälter und Mitte Pumpensaugstutzen [m]

Bei kaltem Wasser und offenem Behälter (Abb. 52 links) in Meereshöhe vereinfacht sich auch diese Formel mit Einheiten wie oben (für die Praxis genau genug) zu

Auch hier gilt: Die Korrektur durch s' ist nur nötig, wenn die Mitte des Laufradeintritts (der für die Kavitationsgefahr maßgebend ist) nicht mit der Mitte des Saugstutzens (= Bezugsebene) auf gleicher Höhe liegt. In Abb. 52 muss bei der linken Pumpe daher $H_{z \text{ geo}}$ um s' "verlängert" werden (d. h. gleiche Vorzeichen von $H_{z \text{ geo}}$ und s'!). Falls s' nicht bekannt ist, genügt meistens eine Abschätzung nach dem Maßbild der Pumpe.

NPSH-Wert der Pumpe NPSH

Mit abnehmendem Druck bilden sich in der Pumpe die ersten Kavitationsblasen schon lange, bevor die hydraulischen Eigenschaften der Pumpe darauf reagieren.

Aus ökonomischen Gründen muss man in der Praxis daher das Auftreten geringfügiger Kavitationsblasen meistens akzeptieren. Dabei kann das für zulässig erachtete Ausmaß der Kavitation mit bestimmten Kriterien definiert werden. Häufig wird ein Förderhöhenabfall der Pumpe von 3 % als Folge der Kavitation zugelassen. Abb. 53 zeigt die Vorgehensweise bei der Ermittlung: Bei konstantem Förderstrom und konstanter Drehzahl wird das NPSH_{vorh} der Versuchsanlage so weit abgesenkt, bis die Förderhöhe der Pumpe gerade um 3 % abgefallen ist. Man kann aber auch den kavitationsbedingten Anstieg des Geräuschpegels oder das Ausmaß eines Materialabtrags oder einen bestimmten Wirkungsgradabfall der Pumpe für die Begrenzung der Kavitation heranziehen. Will man diesen Zustand nicht überschreiten, ist ein Mindest-NPSH-Wert erforderlich, der in den NPSH_{erf}⁻ Kurven unter den QH-Kennlinien in der Einheit m angegeben wird (siehe Abb. 32). Bezugsebene ist dabei die Mitte des Laufradeintritts (Abb. 54), die sich z. B. bei vertikalen Pumpen um das Maß s' von der Bezugsebene der Anlage unterscheiden kann (siehe Abb. 51 und Abb. 52). Um also das somit angegebene Ausmaß der zugelassenen Kavitation nicht zu überschreiten, muss

$NPSH_{vorh} > NPSH_{erf}$

Formel (35)

sein. Abb. 55 zeigt diesen Sachverhalt graphisch im Schnittpunkt von NPSH_{vorh} und NPSH_{erf}. Wird diese Voraussetzung nicht beachtet, fällt die Förderhöhe rechts des Schnittpunktes (bei vergrößertem Förderstrom) schnell ab und bildet "Abreißäste". Ein längerer Betrieb in diesem Zustand beschädigt die Pumpe.

Korrekturmöglichkeiten

Die Zahlenwerte von NPSH_{vorh} und NPSH_{erf} beruhen auf den konstruktiv festgelegten und nachträglich nicht mehr veränderlichen Abmessungen der Anlage und der Pumpe und auf den Daten des Betriebspunktes. Daraus folgt, dass eine nachträgliche Verbesserung der Bedingung NPSH_{vorh} > NPSH_{erf} in einer vorhandenen Kreiselpumpenanlage nur mit einem großen konstruktiven und finanziellen Aufwand in der Anlage oder Pumpe möglich ist. Das betrifft z. B. die Vergrößerung von H_{z eeo} oder die Verminderung von H_{s geo} (durch Höherlegen des Behälters oder tiefere Aufstellung der Pumpe) oder die Reduzierung der saugseitigen Druckverluste H_{vs} oder den Austausch der Pumpe. Im letzten Falle kann der Einsatz eines speziellen Sauglaufrades oder das Vorschalten eines Inducers (Vorschaltpropeller) die Kosten der Verbesserung in Grenzen halten (ein Umbau der Pumpe ist aber dennoch unvermeidlich). Zu beachten ist jedoch, dass die Reduzierung des NPSH_{erf}-Wertes durch einen Inducer nicht für den gesamten Förderstrombereich der betreffenden Pumpe gilt, sondern nur für bestimmte Teilbereiche (siehe Abb. 56). Die Beständigkeit gegen Kavitationsverschleiß kann insbesondere bei Pumpen größerer Nennweiten durch die Wahl geeigneterer (d. h. auch teurerer) Laufradwerkstoffe erhöht werden.

Nur in einem Sonderfall ist die NPSH-Korrektur einfach: Bei geschlossenen Kreisläufen (z. B. in Heizungsanlagen) kann das Druckniveau gegebenenfalls zur Verbesserung von NPSH_{vorh} angehoben werden, sofern die Anlage einen solchen höheren Systemdruck zulässt.

Abb. 54: Lage des Bezugspunktes P., bei verschiedenen Laufrädern

 Abb. 55: "Abreißäste" A₁ und A₂ der QH-Linie bei unzureichendem NPSH_{vorh}: NPSH-Defizit im einfach schraffierten (Fall 1) und doppelt schraffierten Bereich (Fall 2).
 Nach Erhöhung von NPSH_{vorh}(1) auf NPSH_{vorh}(2) wird der nutzbare Betriebsbereich der Pumpe von Q₁ auf Q₂ vergrößert und der Betriebspunkt B erreicht.

Abb. 56: Einfluss eines Inducers (Vorschaltläufers) auf NPSH erf

46

Abb. 57: Geschlossenes Einschaufelrad für Abwasser mit festen oder langfaserigen Beimengungen

Abb. 58: Geschlossenes Kanalrad für feststoffhaltige oder schlammige nicht gasende Flüssigkeiten ohne langfaserige Beimengungen

Abb. 59: Freistromrad für Flüssigkeiten mit groben oder langfaserigen Feststoffen und Gaseinschlüssen

Abb. 60: Schneckenrad für Abwasser mit groben, festen oder langfaserigen Feststoffen oder für Schlämme mit 5 bis 8 % Trockensubstanz

Abb. 61: D-Rad für Abwasser mit festen und langfaserigen als auch mit gröberen Beimengungen

Einfluss von Verunreinigungen

Wenn das Wasser (z. B. häusliches Abwasser, Regenwasser oder Mischwasser) nur geringe Verunreinigungen enthält, werden meistens spezielle Laufrad- und Pumpenbauformen (z. B. mit Reinigungsdeckeln, besonderen Wellendichtungen) eingesetzt [1].

Abb. 57 bis Abb. 61 zeigen die gängigsten Laufradbauformen für diese Abwässer. Bei der Schlammförderung können Kanalräder bis 3 %, Einschaufelräder bis 5 %, Freistromräder bis 7 % und Schneckenräder noch höhere Anteile an Trockensubstanz bewältigen.

Da Einschaufelräder für die Abwasserförderung zur Anpassung des Betriebspunktes (siehe unter "Abdrehen von Laufrädern" auf Seite 38) nicht abgedreht werden können, werden diese Pumpen oft mittels Keilriemen angetrieben.

Zuschläge zu den Antriebsleistungen sind in der erzeugnisspezifischen Dokumentation angegeben [1], da sie nicht nur abhängig von der Antriebsleistung, sondern auch von der Laufradform und der spezifischen Drehzahl sind. So werden z. B. für Einschaufelräder bei der Förderung von häuslichen Abwässern und Fäkalien die folgenden Leistungsreserven empfohlen:

Leistung Antriebsmachine	Leistungsreserven
bis 7,5 kW	ca. 30 % (≥ 1 kW)
von 11 - 22 kW	ca. 20 %
von 30 - 55 kW	ca. 15 %
über 55 kW	ca. 10 %

Tabelle 15: Empfohlene Leistungsreserven

Bei der Ermittlung der Druckhöhenverluste in Rohrleitungen (siehe unter "Druckverluste p_v durch Strömungswiderstände" auf Seite 16) sind besondere Zuschläge erforderlich [1].

Um bei hochbelasteten Abwässern die Gefahr von Verstopfungen in den Rohrleitungen zu vermindern, sollte die Mindestgeschwindigkeit in horizontalen Rohren mit 1,2 m/s und in vertikalen Rohren mit 2 m/s nicht unterschritten werden (genaue Werte sind nur experimentell zu gewinnen!); das ist bei Drehzahlregelungen zu beachten [1].

Besonderheiten bei der Förderung zäher Flüssigkeiten

Die Fließkurve

Die Zähigkeit (Viskosität) einer Flüssigkeit ist ihre Eigenschaft, Schubspannungen zu übertragen.

Abb. 62 verdeutlicht diesen Vorgang: In einer Flüssigkeit wird parallel zu einer ebenen Wand im Abstand y_0 eine ebene Platte mit der benetzten Oberfläche A und der Geschwindigkeit v_0 bewegt. Dabei muss eine Reibungskraft F überwunden werden, die man zur Schubspannung $\tau = F/A$ umrechnen kann. Wird der Wandabstand y_0 oder die Geschwindigkeit v_0 oder die Art der trennenden Flüssigkeit verändert, so beeinflusst dieses die Schubspannung τ proportional zur Geschwindigkeit v_0 oder umgekehrt proportional zum Wandabstand y_0 . Die beiden einfach zu erkennenden Parameter v_0 und y_0 fasst man zum Begriff Schergefälle v_0/y_0 zusammen.

Da die Zähigkeit der Flüssigkeit die Schubspannung τ nicht nur an den Wänden, sondern auch in allen anderen Wandabständen, also zwischen den Flüssigkeitsteilchen überträgt, definiert man verallgemeinert das Schergefälle als $\partial v/\partial y$ (Geschwindigkeitsgefälle pro Änderung des Wandabstandes); es ist ebenso wie die Schubspannung τ nicht für alle Wandabstände y gleich groß, sondern es gibt bei einer Messreihe Wertepaare t und $\partial v/\partial y$, die als Funktion in der sogenannten Fließkurve aufgetragen werden können (Abb. 63)

Ist diese Fließkurve eine Ursprungsgerade

Mineralöle) ist eine normalviskose oder NEWTONsche Flüssigkeit, für die die Gesetze der Hydrodynamik uneingeschränkt gelten. Ist die Fließkurve dagegen keine Ursprungsgerade, sondern eine beliebig verlaufende Kurve, dann handelt es sich um eine nichtNEWTONsche Flüssigkeit, für die die hydrodynamischen Gesetze nur unter Einschränkungen gelten. Beide Fälle müssen daher grundsätzlich unterschieden werden.

Abb. 62: Geschwindigkeitsprofil zwischen einer ebenen Wand und einer parallel dazu geschleppten ebenen Platte.

Abb. 63: Übersicht über das Fließverhalten zäher Flüssigkeiten a ohne, b mit Fließgrenze τ_{ϵ}

Abb. 64: Umrechnung von verschiedenen Einheiten der kinematischen Zähigkeit v in [m²/s]

Abb. 65: Kinematische Zähigkeit v verschiedener Mineralöle als Funktion der Temperatur t

Da in vielen Beziehungen der Quotient aus dynamischer Zähigkeit η und der Dichte ρ vorkommt, hat man ihn als kinematische Zähigkeit definiert

ν =	η ρ	Formel (37)
Lege	nde:	
т	= kinematische Zähigkeit [m²/s]	
η	= dynamische Zähigkeit [Pa s] oder [kg/sm]	
ρ	= Dichte [kg/m³]	

Für Wasser mit 20 °C ist v = 1,00 \cdot 10⁻⁶ m²/s. Weitere Zahlenwerte siehe Tabelle 14.

Die früher gebräuchlichen Einheiten Centistokes = mm²/s, Englergrad °E, Saybolt-Sekunden S" (USA) oder Redwood-Sekunden R" (England) sind heute nicht mehr zugelassen und können mittels Abb. 64 umgerechnet werden auf m²/s.

Die Zähigkeit hängt (unabhängig von der obigen Erläuterung) von der Temperatur ab: Mit steigender Temperatur werden fast alle Flüssigkeiten dünnflüssiger, ihre Zähigkeit nimmt ab (Abb. 65 und Abb. 66). Die dynamische Zähigkeit η kann für alle Flüssigkeiten zur Aufzeichnung der Fließkurve mit einem Rotationsviskosimeter gemessen werden: In einem mit der Prüfflüssigkeit gefüllten zylindrischen Topf rotiert ein Zylinder mit frei wählbarer Drehzahl. Gemessen werden bei mehreren Drehzahlen das Antriebsmoment, die Umfangsgeschwindigkeit, die Größe der benetzten Zylinderfläche und der Wandabstand im Topf.

Newtonsche Flüssigkeiten – Einfluss auf die Pumpenkennlinien

Die Kennlinien der Kreiselpumpen (H, η und P über Q) zeigen erst ab einer kinematischen Zähigkeit $\nu > 20 \cdot 10^{-6}$ m²/s spürbare Einflüsse und müssen erst ab dieser Grenze mit empirisch ermittelten Umrechnungsfaktoren umgerechnet werden.

Die beiden bekanntesten Verfahren sind die nach Standards of the Hydraulic Institute (HI) und nach KSB. Beide Verfahren benutzen zur Darstellung der Umrechnungsfaktoren Diagramme, die zwar in ähnlicher Weise gehandhabt werden, die sich aber darin unterscheiden, dass im KSB-Verfahren außer den Einflussgrößen Q, H und v auch noch zusätzlich der deutliche Einfluss der spezifischen Drehzahl n_q (siehe unter "Spezifische Drehzahl n_q und Laufradbauformen" auf Seite 10) enthalten ist. Das HI-Verfahren (Abb. 67) wurde nur bei n_q = 15 bis 20 gemessen und führt in diesem engen Anwendungsbereich zu zahlengleichen Ergebnissen wie das KSB-Verfahren (Abb. 68), das im n_q-Bereich von 6,5 bis 45 und bei Zähigkeiten bis $v_z = 4000 \cdot 10^{-6} \text{ m}^2/\text{s}$ gemessen wurde. Die Benutzung beider Diagramme ist durch eingezeichnete Beispiele erläutert [9].

Der Förderstrom Q, die Förderhöhe H und der Wirkungsgrad η einer einstufigen Kreiselpumpe, die für einen Wasserbetrieb (Index w) bekannt sind, lassen sich nun für den Betrieb mit einer zähen Flüssigkeit (Index z) wie folgt umrechnen:

$Q_z = f_Q \cdot Q_w$	Formel (38)
$H_z = f_H \cdot H_w$	Formel (39)
$\eta_z = f_n \cdot \eta_w$	Formel (40)

Die Faktoren f werden im HI-Verfahren k genannt; beide sind in den Abb. 67 und Abb. 68 graphisch aufgetragen; in Abb. 68 muss zusätzlich die Pumpendrehzahl n eingelesen werden und die spezifische Drehzahl n_q des Pumpenlaufrades bekannt sein, z. B. nach Abb. 19 oder nach Formel (5).

Abb. 66: Dichte ρ und kinematische Zähigkeit v verschiedener Flüssigkeiten als Funktion der Temperatur t

Abb. 67: Ermittlung der Korrekturfaktoren k nach Standards of Hydraulic Institute. Eingetragenes Beispiel für Q = 200 m³/h, H = 57,5 m, n = $500 \cdot 10^{-6}$ m²/s

Ermittlung des Betriebspunktes

Gegeben:

Förderstrom	Q _w		m³/h
Förderhöhe	H _w		m
Drehzahl	n		1/min
Kinematische Viskosität	ν _z		m²/s
Dichte	ρ _z		kg/m³
Fallbeschleunigung	g	9,81	m/s²

Rechengang:

Q/Q _{opt} =		0	0,8	1,0	1,2	-	
Q _w		0				m³/h	
H _w	aus Kennlinienheft für 4 Punkte der Kennlinie					m	
η _w		0				-	
n _{q, w}	aus "Spezifische Drehzahl n _g und Laufradbauformen" auf Seite 10	-	_		_	1/min	
f _{Q, w}	aus Abb. 68	-				-	
f _{H, w}		-				-	
f _{ŋ, w}		-				-)	
$Q_z = Q_w \cdot f_{Q,w}$		0				m³/h	
H _z =		H _w	$H_{w} \cdot f_{H, w} \cdot 1,03^{-1}$	$H_{w}\cdotf_{H,w}$	$H_{w}\cdotf_{H,w}$	m	≻ ²⁾
$\eta_z = \eta_w \cdot f_{\eta, w}$		0				_	
$P_{z} = \frac{\rho_{z} \cdot g \cdot H_{z}}{\eta_{z} \cdot 1000 \cdot 2}$	Q _z 3600					kW	

¹⁾ wird H_z größer als H_w, ist H_z = H_w zu setzen ²⁾ Mit diesen Werten liegen 4 Punkte der QH_z- und Qη_z- Linie und 3 Punkte der QP_z-Linie fest. Über Q auftragen

Abb. 69: Rechenblatt zur Umrechnung der Pumpenkennlinien bei Förderung einer zähen Flüssigkeit nach dem KSB-Verfahren

Mit diesen Faktoren können dann die für Wasserbetrieb bekannten Betriebsdaten für zähe Flüssigkeiten umgerechnet werden; die Umrechnung gilt im Lastbereich

$$0.8 \cdot Q_{opt} < Q < 1.2 \cdot Q_{opt}$$

F

vereinfacht also bei drei Förderströmen 0,8 und 1,0 und 1,2 · Q_{opt} mit der einzigen Ausnahme: Bei Q = 0,8 Q_{opt} ist H_z = 1,03 · f_H · H_w (H_z aber nie > H_w!).

Beim Förderstrom Q = 0 ist einfach $H_z = H_w$ sowie $\eta_z = \eta_w = 0$ zu setzen. Ein Rechenschema nach Abb. 69 erleichtert die Umrechnung.

Nachdem auch die Leistung bei den drei Förderströmen (im Lastbereich nach Formel (41)) berechnet wurde gemäß

 $\rho_z \cdot g \cdot H_z \cdot Q_z$ $P_z =$ Formel (42) 1000 · η, Leaende: = Dichte [kg/m³] ρ. = Förderstrom [m³/h] Q = Fallbeschleunigung = 9,81 m/s² g = Förderhöhe [m] Н = Wirkungsgrad zwischen 0 und 1 η. = Leistung [kW] können danach alle Kennlinien aus jeweils 4 bzw. 3 berechneten

Punkten über Q_z aufgezeichnet werden, siehe Abb. 70.

Sind in der umgekehrten Aufgabenstellung nicht die Wasserwerte, sondern die Daten bei Betrieb mit zäher Flüssigkeit gegeben (z. B. bei der Suche einer geeigneten Pumpe für den geforderten Betriebspunkt), schätzt man zunächst die Wasserwerte und nähert sich dann mit den Umrechnungsfaktoren f_Q , f_H und f_η iterativ in einem zweiten (oder notfalls dritten) Schritt der Lösung.

Oberhalb einer spezifischen Drehzahl n_q von ≈ 20 führt das besser angepasste KSB-Rechenverfahren zu geringeren Antriebsleistungen, unterhalb dieser Grenze sind die berechneten Antriebsleistungen nach HI zu klein [9]!

Abb. 70: Umzeichnung der Kennlinien von Wasser auf eine zähe Flüssigkeit

Abb. 71: Ermittlung des Rohrreibungsbeiwertes λ_z für zähe Flüssigkeiten. Beispiel: Q = 200 m³/h; d = 210 mm; v_z = 5 · 10 - 4 m²/s

Newtonsche Flüssigkeiten – Einfluss auf die Anlagenkennlinien

Da bei den Newtonschen Flüssigkeiten alle hydrodynamischen Gesetze ihre Gültigkeit ohne Einschränkung behalten, gelten auch die Berechnungsformeln und Diagramme für die Rohrreibungsbeiwerte und für die Verlustbeiwerte in Armaturen weiterhin. Man muss nur bei der Berechnung der REYNOLDS-Zahl Re = v · d/n anstelle der kinematischen Zähigkeit n_w von Wasser jetzt n_z der jeweiligen zähen Flüssigkeit einsetzen. Damit ergibt sich eine kleinere Re-Zahl und nach Abb. 25 folglich ein größerer Rohrreibungsbeiwert λ_z (wobei die Einflüsse der Wandrauhigkeit wegen der jetzt dickeren Grenzschichten in der Strömung außer Acht bleiben können).

Mit dem Verhältnis zum Wasserwert λ_z / λ_w sind dann alle für die Wasserförderung berechneten Druckverluste in Rohrleitungen und Armaturen nach "Druckverluste p_v durch Strömungswiderstände" auf Seite 16 hochzurechnen.

Für den praktischen Gebrauch ist auch Abb. 71 geeignet: In Abhängigkeit vom Förderstrom Q, vom Rohrinnendurchmesser d und von der kinematischen Zähigkeit v_z kann hier schnell der Rohrreibungsbeiwert λ_z ermittelt werden, während der Beiwert λ_w in diesem Diagramm nur bei hydraulisch glatten Rohren (also nicht bei rauhen Rohren) gilt! Mit dem zutreffenden λ_w kann wieder λ_z/λ_w berechnet werden.

Da der statische Anteil der Anlagenkennlinie H_A (Abb. 31) von der Zähigkeit nicht beeinflusst wird, kann somit der dynamische Anteil der für Wasserbetrieb bekannten Anlagenkennlinie als steiler verlaufende Parabel für die zähe Flüssigkeit umgezeichnet werden.

Nicht-Newtonsche Flüssigkeiten – Einfluss auf die Pumpenkennlinie

Wegen des örtlich nicht bekannten Schergefälles in den hydraulischen Bauelementen der Pumpen ist eine Berechnung der Zähigkeitseinflüsse auf die Pumpenkennlinien bei nicht-Newtonschen Flüssigkeiten nicht möglich. Nur für ganz spezielle Flüssigkeiten, wie z. B. Faserstoffbrei, gibt es Erkenntnisse, die eine Vorhersage aufgrund langjähriger Erfahrungen mit diesem Fördermedium gestatten. Die Auslegung der Pumpen muss deshalb der Fachabteilung vorbehalten bleiben.

Nicht-Newtonsche Flüssigkeiten – Einfluss auf die Anlagenkennlinien

Da die Fließkurven keine Geraden mit konstanter Zähigkeit sind, kann man sich so behelfen, dass man sie in kurze Parabelabschnitte unterteilt und für jeden Abschnitt (zweckmäßigerweise in doppeltlogarithmischer Auftragung) auf graphischem Wege den Parameter (= Steifigkeitszahl) und den Exponenten n (= Strukturzahl) der Parabeln ermittelt.

In einem speziellen Diagramm (analog zu Abb. 25), in dem der Rohrreibungsbeiwert λ_z über der verallgemeinerten REYNOLDS-Zahl Re_n für mehrere Exponenten n aufgetragen ist, kann dann λ_z abgelesen und für einen bestimmten Förderstrom Q die Anlagenkennlinie H_A ermittelt werden. Da dieses Verfahren insbesondere wegen der mehrfachen Iterationen aber äußerst umständlich ist, kann es nicht für die allgemeine Anwendung empfohlen werden.

Man greift in diesem Falle wie bei den Pumpenkennlinien auf die besonderen Erfahrungen mit bestimmten Flüssigkeiten zurück und liest in Diagrammen mit engem Anwendungsbereich den Druckhöhenverlust H_v ab. Bei zunehmenden Abweichungen von diesen Voraussetzungen werden die Druckhöhenverluste immer unsicherer, so dass in solchen Fällen nur die Erfahrung der Fachabteilung weiterhelfen kann.

Besonderheiten bei der Förderung gashaltiger Flüssigkeiten

Im Gegensatz zu den gelösten Gasen kann der **Gehalt** einer Flüssigkeit **an ungelösten Gasen** (in Volumenprozent) die Auslegung, die Kennlinien und das Betriebsverhalten von Kreiselpumpen erheblich verändern, wie das Beispiel einer Kanalradpumpe in Abb. 72 zeigt. Dieser Gasgehalt kann durch den Produktionsprozess verursacht werden, aber auch durch undichte Flansche oder Spindeldichtungen an Armaturen in der Saugleitung oder durch luftziehende Wirbel in offenen Einlaufkammern bei zu niedrigem Wasserstand, siehe "Gestaltung des Pumpeneinlaufs" auf Seite 64.

Im Fliehkraftfeld eines Laufrades tendieren die Gasblasen dazu, sich an bestimmten Stellen in der Pumpe anzusammeln und hier die Strömung zu stören. Dieser Effekt wird begünstigt,

- je weiter die Pumpe im Teillastgebiet arbeitet, weil hier wegen der geringeren Strömungsgeschwindigkeiten deren Schleppwirkung nachlässt
- je kleiner der Laufradeintrittsdurchmesser ist, weil dann die Drosselwirkung durch das Gasvolumen relativ stärker ist
- je kleiner die spezifische Drehzahl n_a des Pumpenlaufrades ist
- je geringer die Drehzahl der Pumpe ist.

Eine rechnerische Erfassung dieser Erscheinung ist nicht möglich. Wenn größere Gasgehalte in der Förderflüssigkeit zu erwarten sind, können die folgenden Maßnahmen nützlich sein:

- Ein genügend großer Ruhebehälter in der Saugleitung ermöglicht eine Entgasung der Flüssigkeit und kann die störenden Einflüsse der ungelösten Gasblasen vermindern.
- Rohrleitungen, die zur Füllung eines offenen Ansaugbehälters dienen, müssen unterhalb des Flüssigkeitsspiegels enden, damit z. B. ein freier Wasserfall keine Luftblasen in den Behälter einspülen kann; außerdem soll eine Prallwand den Eintritt von Wirbeln in die Saugleitung verhindern (siehe Abb. 83).
- Ein Teillastbetrieb der Pumpe lässt sich durch Installation einer besonderen Teillastpumpe vermeiden; wenn diese nur zeitweise betrieben werden muss, kann sie vorteilhaft als selbstansaugende Pumpe (mit geringerem Wirkungsgrad) ausgewählt werden.
- Eine Gasabführungsleitung vor der Laufradnabe erfordert eine Absaugevorrichtung, ist bei größerem Gasanteil nur begrenzt leistungsfähig und stört bei normalem Betrieb die Förderung.

- Seitens der Pumpe sind offene Laufräder (siehe Abb. 18) mit möglichst wenig Schaufeln vorteilhaft, ähnlich wie das Vorschalten eines Inducers (Abb. 73). Ohne besondere Maßnahmen können Kanalräder (Abb. 58) bis zu 3%vol und Freistromräder 6 bis 7%vol Gasanteile mitfördern.
- Bei planmäßig hohen Gasanteilen arbeiten Seitenkanalpumpen (geringere Wirkungsgrade, stärkere Geräusche, begrenzter Förderstrom) oder Wasserringpumpen (nach dem Verdrängerprinzip) zuverlässiger.

Abb. 72: Einfluss von ungelöster Luft auf das Betriebsverhalten einer Kanalradpumpe (offenenes Dreikanarad) zur Förderung von vorgereinigten Abwässern

Abb. 73: Schnittbild einer Pumpe mit Inducer (Ausschnitt)

Besonderheiten bei der Förderung feststoffhaltiger Flüssigkeiten

Abb. 74: Sinkgeschwindigkeit $w_{\rm so}$ kugeliger Einzelteilchen (Kugeldurchmesser ds) im ruhenden Wasser

Sinkgeschwindigkeit

w

Le

w g

d,

R

Feststoffe (schwerer als Wasser) lassen sich um so besser fördern, je geringer ihre Sinkgeschwindigkeit und um so größer ihre Strömungsgeschwindigkeit ist. Wegen der vielen Einflussgrößen ist aber die Berechnung der Sinkgeschwindigkeit nur unter abstrahierenden Annahmen möglich:

Die Sinkgeschwindigkeit einer einzelnen Kugel im unbegrenzten Raum (Index 0) folgt aus

$$f_{s0} = \sqrt{\frac{4 \cdot g \cdot d_s}{3 \cdot c_p} \cdot \frac{\rho_s - \rho_f}{\rho_f}}$$
gende:
= Sinkgeschwindigkeit [m/s]
= Fallbeschleinigung = 9,81 m/s²
= Kugeldurchmesser [m]
= Widerstandsbeiwert der Kugel abhängig von Re

 c_{D} = Widerstandsbeiwert der Kugel abhängig vo ρ_{c} = Dichte des Feststoffes [kg/m³]

 ρ_s = Dichte des Feststoffes [kg/m³] ρ_f = Dichte der Flüssigkeit [kg/m³]

$$\mathbf{e}_{s} = \mathbf{w}_{s0} \cdot \frac{\mathbf{d}_{s}}{\mathbf{v}_{f}}$$

Legende: v_{ϵ} = kinematische Zähigkeit der Flüssigkeit [Pa · s]

Die Sinkgeschwindigkeit w_{s0} ist in Abb. 74 graphisch dargestellt.

Wesentlichen Einfluss hat die Konzentration der Feststoffteilchen:

$$\mathbf{c}_{\mathrm{T}} = \frac{\mathbf{Q}_{\mathrm{s}}}{\left(\mathbf{Q}_{\mathrm{s}} + \mathbf{Q}_{\mathrm{f}}\right)}$$

Formel (45)

Formel (43)

Formel (44)

Legende:

- c_{τ} = Konzentration der Förderströme (Transportkonzentration)
- Q_s = Förderstrom des Feststoffes [m³/s]
- Q_f = Förderstrom der Flüssigkeit [m³/s]

Diese Konzentrationen vermindern zusammen mit den begrenzenden Wandeinflüssen der Rohrleitung die Sinkgeschwindigkeit durch die gegenseitige Verdrängerwirkung erheblich etwa nach der empirisch gefundenen Beziehung

$$\mathbf{w}_{s} = \mathbf{w}_{s0} \cdot (\mathbf{1} - \mathbf{c}_{T})^{5}$$

Formel (46)

In der Wirkung nicht abschätzbar ist die unregelmäßige Form der Feststoffe, die von der Kugelform erheblich abweichen kann.

Auch der Einfluss des Kornspektrums ist kaum abschätzbar: Abb. 75 zeigt exemplarisch über der logarithmisch geteilten Skala der Korndurchmesser d_s denjenigen Massenanteil, der noch durch ein Sieb der jeweiligen Maschenweite hindurchfällt. Feststoffströme setzen sich in der Praxis fast immer aus Teilchen verschiedener Durchmesser zusammen, so dass das Kornspektrum einen mehr oder weniger ausgeprägten S-Schlag zeigt. Man hilft sich nun in einfachster Weise dadurch, dass man denjenigen Durchmesser, der einem Massenanteil von 50 % entspricht, als d₅₀ bezeichnet und als repräsentativ für diese Mischung ansieht. Hierin liegt die wichtigste Ursache für alle Unwägbarkeiten in der Planungsphase.

Es ist einzusehen, dass nach allen diesen Annahmen und groben Vereinfachungen exakte Vorhersagen über die Auswirkungen der Feststoffe auf das Verhalten der Strömung, der Anlagenkennlinien, der Förderhöhen und Wirkungsgrade von Pumpen usw. unmöglich sind. Es muss daher Sache der Experten sein, mit ausreichender Erfahrung aus ähnlich gelagerten Fällen Pumpen für den hydraulischen Feststofftransport auszulegen. Selbst dann muss man im Zweifelsfall Experimente zur Absicherung durchführen. Nur einige Tendenzen lassen sich allgemein angeben.

Einfluss auf die Pumpenkennlinien

Die Feststoffe verhalten sich im Fliehkraftfeld des Laufrades anders als die Trägerflüssigkeit, im allgemeinen Wasser. Sie durchqueren die Stromlinien der Wasserströmung und stoßen und reiben sich an den Wänden der Strömungskanäle. Dadurch vermindern sie die im Laufrad erzeugte Förderhöhe H um das Maß Δ H. Darüber gibt es experimentelle Erkenntnisse, die die Einflüsse von Teilchendurchmesser d_s, Konzentration c_T und Feststoffdichte ρ_s sowie der spezifischen Drehzahl n_q wiedergeben. Danach lässt sich die relative Förderhöhenminderung Δ H/H grob abschätzen zu

$$\frac{\Delta H}{H} = \frac{c_{T}}{\Psi} \cdot \sqrt[3]{Re_{s}} \cdot \left(\frac{11,83}{n_{q}}\right)^{3} \cdot \frac{\rho_{s}}{(\rho_{f} - 1)}$$

Legende:

- c_{T} = Transportkonzentration nach Formel (45)
- ψ = Druckziffer der Pumpe, hier etwa = 1
- Re_s = REYNOLDS-Zahl der Feststoffströmung nach Formel (44)
- n_q = spezifische Drehzahl der Pumpe nach Formel (5)
- ρ_s = Dichte des Feststoffes [kg/m³]
- ρ_f = Dichte der Flüssigkeit [kg/m³]

Beim hydraulischen Feststofftransport ist es nötig, die Kennlinien nicht als Förderhöhe H, sondern als Förderdruck Δp über dem Förderstrom Q darzustellen, weil die gemittelte Dichte ρ_m des Feststoff-Wassergemisches (im Gegensatz zur Wasserförderung) nicht konstant bleibt. Vereinfachend werden dabei der geodätische Höhenunterschied $z_{s,d}$ zwischen Saug- und Druckstutzen sowie die Differenz der Geschwindigkeitshöhen ($c_d^2 - c_s^2$)/2 g vernachlässigt, also die Druckhöhe Hp \approx H gesetzt:

$$\Delta p = \rho_m \cdot g \cdot (H - \Delta H)$$

Legende:

- $\rho_m =$ gemittelte Dichte des Feststoff-Wassergemisches nach Formel (49) [kg/m³]
- g = Fallbeschleunigung 9,81 m/s²
- H = Förderhöhe in m
- $\Delta H = F$ örderhöhenminderung nach Formel (47) [m]
- $\Delta p = Druck [N/m^2]$ (zur Umrechnung in bar: 1 bar = 100.000 N/m²)

Die mittlere Dichte einer Mischung berechnet sich nach

$$\boldsymbol{\rho}_{\mathrm{m}} = \boldsymbol{c}_{\mathrm{T}} \cdot \boldsymbol{\rho}_{\mathrm{s}} + (\mathbf{1} - \boldsymbol{c}_{\mathrm{T}}) \cdot \boldsymbol{\rho}_{\mathrm{w}}$$

Legende:

Formel (47)

- $\rho_m = mittlere Dichte [kg/m³]$
- ρ_w = Dichte des Wassers [kg/m³]
- ρ_s = Dichte des Feststoffes [kg/m³]
- c_T = Transportkonzentration nach Formel (45)

Da nun die Druckerhöhung in der Pumpe das Produkt aus der Dichte und der (beim Feststofftransport verminderten) Förderhöhe ist, gehen in die Umrechnung nach Formel (48) zwei voneinander unabhängige Einflüsse ein:

Die durch den Feststoffanteil erhöhte mittlere Dichte und die verminderte Förderhöhe (H - Δ H). Beide Einflüsse werden durch die Konzentration verursacht, aber mit gegenläufiger Tendenz, weil die Dichte den Druck erhöht und die Förderhöhenminderung ihn senkt. Man kann deshalb nicht allgemein vorhersagen, ob die Pumpenkennlinie beim Feststofftransport mit steigender Konzentration höher oder tiefer als bei Wasserförderung liegen wird. Schwere feinkörnige Feststoffe (z. B. Erz) begünstigen eine Anhebung, grobe, leichte Feststoffe (z. B. Kohle) und kleine spezifische Drehzahlen eher eine Absenkung.

Formel (48)

Formel (49)

Abb. 76: Förderdruck der Pumpe Δp_P und Druckverluste der Anlage Δp_A bei verschiedenem Feststoffgehalt (Konzentrationen c_{TA}, c_{TP}) des Förderstromes Q. Der Förderdruck der Pumpe $\Delta p_P = f(c_T)$ kann mit zunehmender

Konzentration c_{TP} bei Feststoffen hoher Dichte auch ansteigen (im Bild mit 10 und 20% fallend dargestellt)

Abb. 77: Typische Kreiselpumpe für den hydraulischen Feststofftransport

Einfluss auf die Anlagenkennlinien

Mit abnehmender Strömungsgeschwindigkeit werden Feststoffteilchen in horizontalen Rohrleitungen immer zahlreicher absinken und sich an der unteren Rohrwand ansammeln. Dadurch steigen einerseits die Reibungswiderstände und vermindert sich andererseits der noch freie Querschnitt, so dass sich trotz sinkender Förderströme die Strömungswiderstände erhöhen. Das hat die ungewöhnliche Form der Anlagenkennlinie wie in Abb. 76 zur Folge. Da das Minimum dieser für mehrere Konzentrationen aufgezeichneten Kennlinien ein sicheres Indiz für die beginnende Ablagerung und schließlich Verstopfung der Rohrleitung ist, wird es allgemein als untere Betriebsgrenze angesehen. Genauere Vorhersagen sind nur mit ausreichender Erfahrung oder aus Experimenten zu wagen.

Betriebsverhalten

Abb. 76 zeigt das typische Betriebsverhalten einer Kreiselpumpe beim hydraulischen Feststofftransport durch eine horizontale Rohrleitung: Mit steigender Konzentration verschiebt sich der Schnittpunkt der Anlagenkennlinie mit der Pumpenkennlinie immer mehr zu kleineren Förderströmen, so dass der Betriebspunkt schließlich unter die Betriebsgrenze geraten würde. Um das zu vermeiden, muss jetzt unverzüglich die Regelung eingreifen. Da aber Drosselarmaturen starkem Verschleiß ausgesetzt wären, kommt zur Förderstromregelung beim hydraulischen Feststofftransport fast ausschließlich die Drehzahlverstellung in Betracht. Sie hat einen weiteren Vorteil: Wenn das Laufrad der Pumpe bei zunehmendem Erosionsverschleiß nur noch geringere Druckerhöhungen liefert, kann man dieses durch eine Drehzahlerhöhung leicht kompensieren.

In vertikalen Rohrleitungen sind die Verhältnisse beim Absinken der Feststoffe viel gefährlicher, weil die Leitungen bei Unterschreitung des Mindestförderstromes (auch beim Abschalten der Pumpe) spontan verstopfen können.

Die hohen Verschleißraten bei der Förderung körniger Feststoffe prägen die Konstruktion dieser Pumpen. Ihre robuste Bauweise zeigt Abb. 77 exemplarisch. Dieser Verschleiß hat weiter zur Folge, dass der zugelassene Betriebsbereich auf die Nähe von Q_{opt} eingeschränkt werden muss. Höhere Feststoffkonzentrationen begrenzen den Einsatz von Kreiselpumpen; die Grenzwerte können nur durch Erfahrung gewonnen werden. Die vorliegenden Ausführungen sollen den Leser davon überzeugen, dass eine Auslegung von Pumpen für den hydraulischen Feststofftransport ohne eigenen soliden Erfahrungsschatz sehr riskant und deswegen ausschließlich Sache von routinierten Experten ist!

Langfaserige Feststoffe

Falls im Förderstrom langfaserige Feststoffe enthalten sind, kann es insbesondere bei Propellerpumpen zu Betriebsstörungen kommen, wenn diese Stoffe (Pflanzenfasern, Kunststofffolien, Lumpen z. B.) an der Vorderseite der Propellerschaufel hängenbleiben und sich hier ansammeln.

Die Folge davon ist ein immer stärker anwachsender Förderhöhenverlust und zugleich Leistungsanstieg, bis der Antriebsmotor wegen Überlastung abgeschaltet werden muss.

Das Problem wird dadurch lösbar, dass die Vorderkanten der Propellerschaufeln durch Verschiebung der einzelnen Profilebenen beim Schaufelentwurf nach hinten geneigt sind, vergleichbar mit der Neigung von gepfeilten Tragflügeln. Die Fasern können dann im Betrieb entlang der Schaufelvorderkante abrutschen, bis sie am Außendurchmesser des Propellers im Spalt zerschnitten und fortgespült werden. Diese sich selbst reinigenden Schaufeln werden ECB-Schaufeln (=ever clean blade) genannt [5].

Kommunales Rohabwasser enthält oft Textilien, die bei Laufrädern mit mehreren Schaufelkanälen oder ähnlichen Strömungsteilern zur Zopfbildung und zum Verstopfen der Laufräder führen können. Einschaufelräder, Schneckenräder oder Freistromräder (siehe Abb. 57, Abb. 59 und Abb. 60) sind hier weniger gefährdet.

Die Peripherie

Aufstellungsarten der Pumpen

Aufstellungsarten sind Baumerkmale, um die sich die Erscheinungsformen der Pumpen innerhalb einer Bauform (im allgemeinen einer Baureihe) unterscheiden.

Die folgenden Bilder 59 a bis o zeigen exemplarisch die häufigsten Aufstellungsarten für horizontale und vertikale Kreiselpumpen [1].

Wesentliche Parameter für die Aufstellungsart einer Pumpe sind:

- die horizontale oder vertikale Lage der Welle (Bilder a und b, auch i und c oder h und f)
- die Anordnung der Pumpenfüße unten oder in Achsmitte (Bilder d und e)
- die Aufstellung des Aggregates auf einem Fundament oder frei (Bilder b und f)
- die Anordnung der Antriebsmaschine auf eigener oder auf gemeinsamer Gundplatte oder an die Pumpe geflanscht (Bilder g, a, h und i)
- die Verteilung der Gewichte von Pumpe und Antriebsmaschine
- die Anordnung des Druckstutzens bei Rohrgehäusepumpen, (Bilder k, l, m und n)
- Pumpengehäuse von außen trocken oder benetzt (Bilder b und o).

Abb. 79: Schräge Pumpensumpfwände gegen Ablagerungen und Ansammlung von Feststoffen

Abb. 80: Exzentrisches Übergangsstück (links) und Abzweigstück (rechts) zur Vermeidung von Luftsäcken

Pumpensumpf

Der Pumpensumpf auf der Pumpensaugseite dient zum Sammeln und diskontinuierlichen Abpumpen der Förderflüssigkeit, wenn der anfallende mittlere Zuflussstrom kleiner als der Pumpenförderstrom ist. Seine Größe hängt ab vom Pumpenförderstrom Q und von der zulässigen Schalthäufigkeit Z der Elektromotore, siehe "Auswahl des Elektromotors – Bemessung der Motorleistung" auf Seite 29.

Das Nutzvolumen V_N des Pumpensumpfes berechnet sich nach

$$V_N = Q_{zu} \cdot \frac{Q_m - Q_{zu}}{Q_m \cdot Z} \text{ mit } Q_m = \frac{Q_e + Q_a}{2}$$
 Formel (50)

Legende:

- $V_{N} =$ Nutzvolumen des Pumpensumpfes einschließlich eines eventuellen Rückstauvolumens [m³]
- Q_{zu} = Zuflussstrom [m³/h]
- Q_m = gemittelter Förderstrom [m³/h]
- Q = Förderstrom beim Einschaltpunkt [m³/h]
- Q_a = Förderstrom beim Ausschaltpunkt [m³/h]
- Z = zulässige Schalthäufigkeit der Elektromotore [1/h]

Das Maximum der Schalthäufigkeit ergibt sich, wenn der gemittelte Förderstrom Q_m doppelt so groß ist wie der zufließende Flüssigkeitsstrom Q_{zu} .

$$Z_{max} = \frac{Q_m}{4 \cdot V_N}$$

Formel (51)

Legende:

- Z_{max} = maximale Schaltzahl [1/h]
- Q_m = gemittelter Förderstrom [m³/h]
- V_N = Nutzvolumen des Pumpensumpfes einschließlich eines eventuellen Rückstauvolumens [m³]

Abb. 81: Beschleunigungskrümmer vor einer vertikalen Spiralgehäusepumpe hoher spezifischer Drehzahl

Bei verschmutzten Flüssigkeiten muss vermieden werden, dass sich Feststoffe in Toträumen und am Boden ablagern und anstauen können. Hier können abgeschrägte Wände von mindestens 45°, besser 60° helfen, wie in Abb. 79 gezeigt.

Saugleitung

Die Saugleitung soll möglichst kurz und leicht steigend zur Pumpe verlaufen, gegebenenfalls sind exzentrische Saugrohre nach Abb. 80 vorzusehen (mit einem genügend langen geraden Rohrstück vor der Pumpe L \geq d), um die Bildung von Luftsäcken zu verhindern.

Ist ein Rohrkrümmer kurz vor dem Pumpeneinlauf bauseitig nicht zu vermeiden, ist ein Beschleunigungskrümmer (Abb. 81) vorteilhaft, um die Strömung zu vergleichmäßigen; vor zweiströmigen Pumpen oder Pumpen mit halbaxialen (oder gar axialen) Laufrädern ist aus dem gleichen Grunde ein Umlenkgitter im Krümmer (siehe Abb. 82) erforderlich, sofern es die zu fördernde Flüssigkeit erlaubt (keine langfaserigen Feststoffe, siehe "Langfaserige Feststoffe" auf Seite 61).

Der Abstand zwischen Saug- und Zulaufleitung im Saugbehälter bzw. Pumpensumpf muss genügend groß sein, um den Eintritt von Luft oder Wirbeln in die Saugleitung zu verhindern; gegebenenfalls sind Prallwände (Abb. 83) vorzusehen. Die Zulaufleitung muss immer unter dem Flüssigkeitsspiegel münden, siehe Abb. 83.

Bei ungenügender Überdeckung der Saugleitung im Saugbehälter bzw. im Pumpensumpf durch den Flüssigkeitsspiegel kann bei Rotation des Fördermediums ein luftziehender Wirbel (Hohlwirbel) entstehen. Beginnend mit einer trichterförmigen Vertiefung des Flüssigkeitsspiegels bildet sich dann in kurzer Zeit ein Luftschlauch von der Oberfläche bis in die Saugleitung, der einen sehr unruhigen Lauf und einen Leistungsabfall der Pumpe zur Folge haben kann. Die deswegen notwendigen Mindestüberdeckungen (= Mindesteintauchtiefen) sind in Abb. 85 angegeben, die Mindestabstände der Saugleitungen von Wänden und Behälterboden in Abb. 84. (Bei Rohrgehäusepumpen gelten besondere Maßnahmen, siehe "Einlaufgestaltung bei Rohrgehäusepumpen" auf Seite 68).

Die Mindestüberdeckung S_{min} kann aus Abb. 85 als Funktion des Eintrittsdurchmessers d_E (das ist bei stumpf endenden Rohren der Rohrinnendurchmesser oder wenn vorhanden der Öffnungsdurchmesser der Einlaufdüse) und dem Förderstrom Q abgelesen oder nach Angaben des Hydraulic Institute wie folgt berechnet werden:

$$S_{\min} = d_{E} + 2,3 \cdot v_{s} \cdot \sqrt{\frac{d_{I}}{g}}$$
$$v_{s} = \frac{Q}{900 \cdot \pi \cdot d^{2}}$$

Formel (52)

 Legende:

 S_{min}
 = Mindestüberdeckung [m]

 d_E
 = Eintrittsdurchmesser des Saugrohres oder der Einlaufdüse [m]

 v_s
 = Strömungsgeschwindigkeit; empfohlen 1 bis 2 m/s, aber keineswegs größer als 3 m/s

 g
 = Fallbeschleunigung 9,81 m/s²

 Q
 = Förderstrom [m³/h]

Die vom VdS Schadenverhütung angegebenen Mindestüberdeckungen stimmen bei einer Strömungsgeschwindigkeit von 1 m/s sehr gut damit überein [13].

Abb. 82: Einlaufkrümmer mit Umlenkgitter vor einer zweiströmigen horizontalen Spiralgehäusepumpe (Draufsicht)

Abb. 83: Rohrleitungsanordnung im Saugbehälter zur Vermeidung von Lufteintritt in die Pumpe

Abb. 84: Wandabstände vom Saugrohr im Saugbehälter nach Angaben des VdS. S_{min} nach Bild 67. 2 Saugrohre nebeneinander erfordern einen Abstand ≥ 6 dE

Abb. 85: .Mindesteintauchtiefe S_{min} von horizontalen und vertikalen Saugrohren (mit und ohne Einlaufdüse) in Saugbehältern zur Vermeidung von Hohlwirbeln (nach Hydraulic Institute)

Wo die genannten Mindestüberdeckungen nicht oder nicht immer zur Verfügung gestellt werden können, sind gegen luftziehende Wirbel z. B. die in der Abb. 86 dargestellten Maßnahmen oder eine gedeckte Einlaufklammer vorzusehen. Unabhängig von den obigen Gesichtspunkten ist zu überprüfen, ob diese Eintauchtiefen auch die Anforderungen der NPSH_{vorh}-Berechnung "NPSH-Wert der Pumpe NPSH_{erf}" auf Seite 44 erfüllen.

Spezielle, aber häufige Fälle sind runde Behälter mit tangential angeordneter Zulaufleitung, deren austretender Strahl den Behälterinhalt in Rotation versetzt; hier sollten Leitvorrichtungen wie in Abb. 87 vorgesehen werden.

Abb. 86: Einbau drallverhindernder Leitflächen gegen luftziehende Einlaufwirbel

Abb. 87: Einbau von Leitvorrichtungen in zylindrische Einlaufbehälter zur Verhinderung von Störungen beim Zufluss zur Pumpe

Abb. 88: Saugrohranordnung in Einlaufkammern von Rohrgehäusepumpen. S_{min} nach Abb. 89, d_e \approx (1,5 bis 1,65) d_s, 2 Saugrohre nebeneinander erfordern einen Abstand > 3 dE.

Abb. 89: Mindesteintauchtiefe S_{min} des Saugrohres von Rohrgehäusepumpen zur Vermeidung von Hohlwirbeln

Einlaufgestaltung bei Rohrgehäusepumpen

Bei Rohrgehäusepumpen [1] kommt der Mindestüberdeckung durch den Wasserspiegel und der Gestaltung der Einlaufkammer eine besondere Bedeutung zu, weil Laufräder hoher spezifischer Drehzahl sehr empfindlich auf ungleiche Zuströmungen und luftziehende Wirbel reagieren.

Abb. 88 zeigt die Anordnung von Saugrohren in Einlaufkammern von Rohrgehäusepumpen. Für offene, nicht ausgekleidete Einlaufkammern mit und ohne Einlaufkegel kann die Mindestüberdeckung aus Bild 72 abgelesen oder nach der folgenden Gleichung berechnet werden:

$$\begin{split} \mathbf{S}_{\min} &= \mathbf{0}, \mathbf{8} \cdot \mathbf{d}_{E} + \mathbf{1}, \mathbf{38} \cdot \mathbf{v}_{s} \cdot \sqrt{\frac{\mathbf{d}_{E}}{g}} & \text{Formel (53)} \\ \mathbf{v}_{s} &= \frac{\mathbf{Q}}{900} \cdot \mathbf{\pi} \cdot \mathbf{d}_{E}^{2} \\ \end{split}$$

$$\begin{aligned} \text{Legende:} \\ \mathbf{S}_{\min} &= \text{Mindestüberdeckung [m]} \\ \mathbf{d}_{E} &= \text{Eintrittsdurchmesser der Saugglocke [m]} \\ \mathbf{v}_{s} &= \text{Strömungsgeschwindigkeit [m/s]} \\ \mathbf{g} &= \text{Fallbeschleuingung 9,81 m/s}^{2} \\ \mathbf{Q} &= \text{Förderstrom [m^{3}/h]} \end{aligned}$$

Ausgekleidete oder überdeckte Einlaufkammern oder Kaplankrümmer sind aufwendiger, erlauben aber geringere Mindestüberdeckungen [1].

Unabhängig von den obigen Gesichtspunkten ist zu überprüfen, ob diese Eintauchtiefen auch die Anforderungen der NPSH_{vorh}-Berechnung nach "NPSH-Wert der Pumpe NPSH_{erf}" auf Seite 44 erfüllen.

Ansaughilfen

Die meisten Kreiselpumpen sind nicht selbstansaugend; das heißt, ihre Saugleitung und das saugseitige Pumpengehäuse müssen vor der Inbetriebnahme entlüftet sein, damit die Pumpe fördern kann, sofern das Laufrad nicht unter dem Flüssigkeitsspiegel angeordnet ist. Diese oft lästige Prozedur kann man vermeiden, wenn man den Eintritt des Saugrohres mit einem Fußventil (in der Funktion einer Rückschlagarmatur) ausrüstet (Abb. 90). Die Entlüftung ist dann nur bei der ersten Inbetriebnahme und nach längerer Stillstandszeit nötig.

Auch ein Saugbehälter (Saugkasten, Vakuumvorlage) erfüllt den gleichen Zweck, insbesondere bei verunreinigten Flüssigkeiten, (erhöht aber auch die Strömungsverluste und vermindert damit das NPSH_{vorh}): Vor den Saugstutzen der Pumpe wird ein vakuumdichter Behälter geschaltet (Abb. 91), der vor der ersten Inbetriebnahme mit Förderflüssigkeit aufgefüllt werden muss. Beim Anfahren fördert die Pumpe diese Vorlage leer, wobei das Luftvolumen aus der als Heberleitung ausgeführten Saugleitung über deren Scheitel in den Behälter gesaugt wird, bis die anzusaugende Flüssigkeit nachströmen kann. Das Wiederauffüllen des Saugbehälters aus der Druckleitung kann von Hand oder automatisch geschehen, nachdem die Pumpe abgeschaltet wurde; das gespeicherte Luftvolumen entweicht dann wieder aus dem Saugbehälter in die Saugleitung.

Abb. 90: Fußventil (Tellerventil) mit Saugkorb

Abb. 91: Anordnung eines Saugbehälters

Abb. 92: Diagramm zur Ermittlung der Größe des Saugbehälters. Die Reihenfolge der Vorgehensweise ist mit Positionsnummern 1 bis 4 angegeben.
 Das rechnerische Ergebnis ist in der Graphik bereits mit dem Zuschlagfaktor 3,0 vervielfacht.
 (Druckhöhenverluste H_{v,s} der Saugleitung vernachlässigt)

Das Volumen VB des Saugbehälters hängt nur vom Volumen der Saugleitung und von der Saughöhe der Pumpe ab:

Abb. 93: Anordnung von Druckmessstellen vor und hinter der Pumpe

Da in	den meisten	Fällen H _{v, s}	deutlich	kleiner	sein	wird	als
Н _{. "ео} ,	kann man F	ormel (55)	vereinfac	chen zu	H =	H	0

_{geo} = geodätische Saughöhe [m], siehe Abb. 51 s = Widerstände in der Saugleitung [m]

Für diesen Fall bietet Abb. 92 für die Ermittlung der Behältergröße eine schnellere graphische Lösung. Sicherheitshalber sollte das Volumen des Saugbehälters um den Faktor 2 bis 2,5 vergrößert werden, bei kleinen Anlagen bis 3. Der Verdampfungsdruck der Flüssigkeit darf an keiner Stelle des Systems unterschritten werden.

Quelle		VdS 2092-S Betriebsmessung	ISO 9906 Abnahmemessung
Abstand vom	A _s /D	0,5	2,0
Pumpenflansch	A _d /D	1,0	2,0
Ungestörte	U,/D	2,5	(5+n _q)/53
Rohrlänge	U _d /D	2,5	-

Tabelle 16: Mindestwerte für ungestörte Rohrlängen bei Messstellen in Vielfachen des Rohrdurchmessers D

Anordnung von Messstellen

Damit bei Messungen von Drücken oder Strömungsgeschwindigkeiten eine bestimmte Messgenauigkeit eingehalten werden kann, muss die Strömung an den Messstellen geordnet sein. Um diesen Zustand zu erreichen, benötigt die Strömung vor und hinter der Messstelle ungestörte Rohrstrecken, die in Bild 76 bezeichnet und in Tabelle 14 angegeben sind. Dabei gelten alle Rohreinbauten, die den geradlinigen, parallelen und drallfreien Verlauf der Strömung beeinflussen können, als Störung.

Der VdS Schadenverhütung gibt für Betriebsmessungen Abstände in Vielfachen der Rohrdurchmesser an, ISO 9906 benennt Abstände für Abnahmemessungen. Beide Quellen sind in der Tabelle 14 erfasst. Werden diese Strecken unterschritten, muss mit einer Verminderung der Messgenauigkeit gerechnet werden. Danach sind die Pumpenflansche als Messstellen für die oben genannten Zwecke ungeeignet. Die Druckmessstellen sollen aus einer Bohrung von 6 mm Durchmesser und einer Schweißmuffe zur Anbringung des Manometers bestehen. Besser sind Ringmesskammern mit vier gleichmäßig am Umfang verteilten Bohrungen. 72

Abb. 94: Elastische (links) und hochelastische Kupplung

Abb. 95: Pumpe mit Zwischenhülsenkupplung im Vergleich zur Normalkupplung

Wellenkupplungen

In der Kreiselpumpentechnik werden starre und nachgiebige (elastische) Wellenkupplungen verwendet. Starre Kupplungen dienen vornehmlich zur Verbindung einwandfrei fluchtender Wellen, denn schon geringste Verlagerungen (Fluchtfehler) verursachen erhebliche Zusatzbeanspruchungen in der Wellenkupplung und auch in den benachbarten Wellenabschnitten.

Die nachgiebige Wellenkupplung nach DIN 740 ist ein elastisches, schlupffreies Verbindungselement zwischen Antriebsmaschine und Pumpe, welches axiale, radiale und winklige Fluchtfehler ausgleichen und Stoßbelastungen abbauen kann.

Die Nachgiebigkeit wird vielfach durch Verformung dämpfender und gummielastischer Federelemente erzielt, deren Lebensdauer vom Ausmaß der auszugleichenden Fluchtfehler stark beeinflusst wird. Abb. 94 zeigt zwei der gebräuchlichsten Bauarten nachgiebiger Wellenkupplungen. Am Beispiel eines Spiralgehäusepumpen-Aggregates ist in Abb. 95 eine Zwischenhülsenkupplung dargestellt, die den Ausbau des Pumpenläufers ohne Demontage der Saug- bzw. Zulauf- und Druckleitung sowie ohne Verschieben der Antriebsmaschine ermöglicht (sogenannte Prozessbauweise).
Belastung der Pumpenstutzen

Die auf dem Pumpenfundament befestigten Kreiselpumpen sollen möglichst nicht als Fixpunkte zur Befestigung der Rohrleitungen benutzt werden. Aber selbst wenn die Rohrleitungen bei der Montage spannungslos an die Pumpenstutzen angeschlossen werden, ergeben sich unter den Betriebsbedingungen (Druck und Temperatur) sowie durch die Gewichte der flüssigkeitsgefüllten Rohrleitung Kräfte und Momente, die als Stutzenbelastung zusammengefasst werden. Sie führen zu Spannungen und Verformungen in den Pumpengehäusen und vor allen Dingen zu Veränderungen in der Kupplungsausrichtung, so dass die Laufruhe der Pumpe und die Lebensdauer der elastischen Elemente in der Wellenkupplung sowie die Lager und Gleitringdichtungen darunter leiden können. Deswegen werden die zulässigen Stutzenbelastungen begrenzt [1].

Da sich das Lastkollektiv für jeden Pumpenstutzen aus drei Kraft- und drei Momentenkomponenten zusammensetzt, ist es nicht möglich, für alle denkbaren Kombinationen die theoretischen Grenzwerte der Stutzenbelastung anzugeben. Entweder prüft man daher durch eine Nachrechnung, ob die anlagenseitig vorgegebenen Stutzenbelastungen noch zulässig sind, oder aber man begnügt sich mit entsprechend stark reduzierten pauschalen Grenzwerten, wie sie in mehreren Technischen Regelwerken genannt sind [14].

Abb. 96: Zulässige Momente M_{max} in Flanschebene sowie zulässige Kräfte F_{H,max} (in x,z-Ebene) und F_{V,max} (in y-Richtung) nach ISO 5199 für einstufige Spiralgehäusepumpen aus ferritischem Stahlguss oder Sphäroguss bei Raumtemperatur.
 Für austenitischen Stahlguss oder Gusseisen mit Lamellen-

graphit oder für höhere Temperaturen gelten niedrigere Zahlenwerte.

Abb. 96 zeigt als Beispiel die zulässigen Stutzenbelastungen an einstufigen Spiralgehäusepumpen nach ISO 5199 (durchgezogene Linien für Pumpen auf ausgegossener Grundplatte, gestrichelte Linien für Pumpen auf nicht ausgegossener Grundplatte)

Rechenbeispiele

Rechenbeispiel 1: Förderdruck

Gegeben:

- Spiralgehäusepumpe Etanorm 80–200, Kennlinien siehe Abb. 32, Drehzahl n = 2900 min⁻¹,
- Laufraddurchmesser D₂ = 219 mm,
- Betriebspunkt im Bestpunkt:
 Q = 200 m³/h, H = 57,5 m, η = 83,5 %,
- Wassertemperatur t = 20 °C,
- Dichte $\rho = 998,2 \text{ kg/m}^3$.
- Stutzennennweiten DN_d = 80; DN_s = 100;
 Stutzeninnendurchmesser d_d = 80 mm, d_s = 100 mm [1].
- Höhendifferenz zwischen Saug- und Druckstutzen z_{sd} = 250 mm, siehe Abb. 23.

Gesucht:

Die Druckdifferenz Δp , die die Manometer zwischen Druck- und Saugseite anzeigen.

(Die Einbeziehung von $z_{s,d} = 250$ mm setzt voraus, dass die beiden Druckmessgeräte genau in Stutzenhöhe angebracht werden, also auch diesen Höhenunterschied haben; befinden sie sich dagegen auf gleicher Höhe, so ist $z_{s,d} = 0$ zu setzen; zur messtechnisch einwandfreien Lage der Messstellen siehe dagegen den Absatz "Anordnung von Messstellen" auf Seite 71 und ISO DIS 9906).

Berechnung:

Strömungsgeschwindigkeiten

 $\mathbf{v}_{d} = 4 \text{ Q} / \pi d_{d}^{2} = 4 \cdot (200/3600) / \pi 0,08^{2} = 11,1 \text{ m/s}$ $\mathbf{v}_{s} = 4 \text{ Q} / \text{p} d_{s}^{2} = 4 \cdot (200/3600) / \pi 0,10^{2} = 7,08 \text{ m/s}$

Nach Formel (1): $\Delta \mathbf{p} = \rho \cdot \mathbf{g} \cdot (\mathbf{H} - \mathbf{z}_{s,d} - (\mathbf{v}_d^2 - \mathbf{v}_s^2) / 2\mathbf{g})$ ergibt sich $\Delta \mathbf{p} = 998, 2 \cdot 9, 81 \cdot (57, 5 - 0, 250 - (11, 12 - 7, 082)/(2 \cdot 9, 81))$

= 524 576 Pa = 5,25 bar

Rechenbespiel 2: Leistungsbedarf

Gegeben:

Daten aus Rechenbeispiel 1.

Gesucht:

Der Leistungsbedarf P

Berechnung:

Nach Formel (2): $P = \rho \cdot g \cdot Q \cdot H / \eta$ ergibt sich $P = 998,2 \cdot 9,81 \cdot (200 / 3600) \cdot 57,5 / 0,835$ $= 37 \ 462 \ W = 37,5 \ kW$

Rechenbeispiel 3: Spezifische Drehzahl

Gegeben:

Daten aus Rechenbeispiel 1.

Gesucht:

Spezifische Drehzahl n_a

Berechnung:

Nach Formel (5): $\mathbf{n}_q = \sqrt{\mathbf{Q}_{opt}} / \mathbf{H}_{opt}^{3/4}$ ergibt sich: $\mathbf{n}_q = 2900 \cdot \sqrt{200 / 3600} / 57,5^{3/4}$ $= 2900 \cdot 0,236 / 20,88$ $= 32,8 \text{ min}^{-1}$

Rechenbeispiel 4: Anlagenförderhöhe H_A

Gegeben:

- Kreiselpumpenanlage nach Abb. 23 mit den Behältern B und D,
- ausgelegt f
 ür einen F
 örderstrom von Q = 200 m³/h zur F
 örderung von Wasser bei 20 °C.
- Der Druckbehälter steht unter einem Überdruck von $p_a = 4,2$ bar, der Saugbehälter D ist atmosphärisch belüftet, $v_a \approx 0$ und $p_a = 0$.
- Der geodätische Höhenunterschied beträgt 11,00 m;
- die geschweißte Druckleitung hat die Nennweite DN 200 (d = 210,1 mm nach Tabelle 5).
- Die Druckhöhenverluste der Anlage werden mit 3,48 m angegeben.
- Nach Tabelle 14 ist die Dichte von Wasser bei 20 °C
 ρ = 998,2 kg/m³

Gesucht:

Anlagenförderhöhe H_A

Berechnung:

Nach Formel (8) $H_{A} = H_{geo} + (p_{a} - p_{e}) / (\rho \cdot g) + (v_{a}^{2} - v_{e}^{2}) / 2 \cdot g + \Sigma H_{v}$ ergibt sich mit $v_{a} = 4 \cdot Q / (3600 \cdot \pi \cdot d^{2})$ $H_{A} = 11,00 + (420000/998,2\cdot9,81) + (1,602-0)/2\cdot9,81 + 3,48$ = 11,00 + 42,98 + 0,13 + 3,48 = 57,50 m

Rechenbeispiel 5: Druckhöhenverlust H_v in Rohrleitungen

Gegeben:

- Daten aus Rechenbeispiel 1
- Saugrohrleitung DN 200 (d= 210,1 mm nach Tabelle 5)
- Länge 6,00 m
- mittlere absolute Rauhigkeit k = 0,050 mm

Gesucht:

Druckhöhenverlust H_v

Berechnung und/oder graphische Bestimmung:

Nach Formel (11) $H_v = \lambda \cdot L/d \cdot v^2/2 \cdot g$ oder durch Ablesen aus Abb. 26 folgt: $H_v = 1,00 \cdot 6,00 / 100 = 0,060 m$

Umständlicher, aber für andere Rauhigkeiten unvermeidlich, wäre die Bestimmung nach Abb. 25: Relative Rauhigkeit d / k = 210,1 / 0,050 = 4202 Nach Formel (13) ist die REYNOLDS-Zahl Re = v · d / v v = 1,00 · 10 - 6 m²/s = 4 m²/s, v = Q / A = (Q / 3600) · 4 / (π · d²) = (200 / 3600) · 4 / (π · 0,21012) = 1,60 m/s, Re = v · d / n = 1,60 · 0,2101 / 10⁻⁶ = 3,37 · 10⁵ Aus Abb. 25 folgt mit d / k = 4202 dann λ = 0,016 Eingesetzt in Formel (11) ergibt sich H_v = λ · (L / d) · v² / 2g = 0,016 · (6,00 / 0,2101) · 1,602 / 2 · 9,81 = 0,060 m

Rechenbeispiel 6: Druckhöhenverlust H, in Armaturen und Formstücken

Gegeben:

Die Saugleitung nach Rechenbeispiel 5 enthält

- einen Flachschieber DN 200,
- einen 90°-Krümmer mit glatter Oberfläche und R = 5 d,
- ein Fußventil DN 200
- und eine Rohrleitungsverengung DN 200/DN 100 nach Tabelle 8 vom Typ IV mit einem Öffnungswinkel von $\alpha = 30^{\circ}$

Gesucht:

Druckhöhenverlust H

Bestimmung und Berechnung:

- Nach Tabelle 6 hat der Flachschieber einen gemittelten Verlustbeiwert von $\xi = 0,20$
- nach Tabelle 7 hat der 90°-Krümmer eine Verlustbeiwert von **ξ** = 0.10
- nach Tabelle 6 hat das Fußventil einen gemittelten Verlustbeiwert von $\xi = 2,0$
- nach Tabelle 8 hat die Verengung einen Verlustbeiwert von ξ = 0,21
- Die Summe aller Verlustbeiwerte beträgt $\Sigma \xi = 2,51$
- Nach Formel (17) ergibt sich für das gesuchte H_y:
 - $H_{v} = \Sigma \boldsymbol{\xi} \cdot v^{2}/2 \cdot g = 2,51 \cdot 1,60^{2}/2 \cdot 9,81 = 0,328 \text{ m}$

Lochblende

Gegeben:

Rechenbeispiel 7:

Die Pumpe nach Rechenbeispiel 1 hat eine geschweißte Druckleitung DN 80 mit einem Innendurchmesser von d = 83,1 mm. Die Förderhöhe soll um $\Delta H = 5,00$ m ständig abgedrosselt werden.

Gesucht:

Innendurchmesser d_{BI} der Drosselblende

Berechnung und Iteration:

Formel (22) $d_{BI} = f \cdot \sqrt{\frac{Q}{\sqrt{g \cdot \Delta H}}}$, der Drosselbeiwert f wird aus Abb. 40 bestimmt.

Zunächst wird d_{BI} geschätzt, $(d_{BI}/d)^2$ mit diesem Schätzwert berechnet und f aus Abb. 40 ermittelt. Mit diesen Werten erhält man aus Formel (22) ein Ergebnis für d_{BI}. Solange der errechnete Wert von dBl vom geschätzten Wert abweicht, iteriert man weiter. Zur schnelleren Lösungsfindung empfiehlt es sich, in einer Graphik die Ergebnisse über der jeweils zugehörigen Schätzung aufzutragen, so dass die 3. Schätzung durch Schnitt der Verbindungslinie mit der Diagonalen schon das Endergebnis liefert, siehe Abb. 97.

$$\sqrt{\frac{Q}{\sqrt{g \cdot \Delta H}}} = \sqrt{\frac{200}{\sqrt{9,81 \cdot 5,0}}} = 5,34 \text{ m}$$

1. Schätzung: $d_{_{RI}} = 70 \text{ mm} \rightarrow (d_{_{RI}}/d)^2 = (70/83,1)^2 = 0,709 \rightarrow f = 12,2$ $d_{_{Bl}} = f \cdot 5,34 = 65,1 \text{ mm}$

2. Schätzung:

$$d_{Bl} = 68 \text{ mm} \rightarrow (d_{Bl}/d)^2 = (68/83,1)^2 = 0,670 \rightarrow f = 12,9$$

 $d_{Bl} = f \cdot 5,34 = 68,9 \text{ mm}$

3. Schätzung: $d_{_{\rm Bl}} = 68,4 \text{ mm} \rightarrow (d_{_{\rm Bl}}/d)^2 = (68,4/83,1)^2 = 0,679 \rightarrow f = 12,8$ $d_{BI} = f \cdot 5,34 = 68,4 \text{ mm}$

Abb. 97: Grafik zur schnelleren Lösungsfindung Rechenbeispiel 7

Rechenbeispiel 8: Q₂, H₂ und P₂ nach Drehzahländerung

Gegeben:

Die Drehzahl der Pumpe aus Rechenbeispiel 1 (Betriebsdaten mit Index 1) soll von $n_1 = 2900 \text{ min}^{-1}$ auf $n_2 = 1450 \text{ min}^{-1}$ vermindert werden. Es wird dabei der gleiche Wirkungsgrad für beide Drehzahlen angenommen.

Gesucht:

Die Daten für Förderstrom Q_2 , Förderhöhe H_2 und Antriebsleistung P_2 nach der Änderung.

Berechnung:

Nach Formel (23): $Q_2 = Q_1 \cdot (n_2/n_1)$ ergibt sich: $Q_2 = 200 (1450 / 2900) = 100 \text{ m}^3/\text{h}$

Nach Formel (24): $H_2 = H_1 \cdot (n_2/n_1)^2$ ergibt sich: $H_2 = 57,5 \cdot (1450 / 2900)^2 = 14,4 \text{ m}$

Nach Formel (25): $P_2 = P_1 \cdot (n_2/n_1)^3$ ergibt sich: $P_2 = 37,5 \cdot (1450 / 2900)^3 = 4,69 \text{ kW}$

Rechenbeispiel 9: D, und H, nach Laufrad abdrehen

Gegeben:

Der Bestförderstrom $Q_t = 200 \text{ m}^3/\text{h}$ der Pumpe aus Rechenbeispiel 1 soll durch Abdrehen des Laufraddurchmessers von $D_t = 219 \text{ mm}$ auf $Q_r = 135 \text{ m}^3/\text{h}$ vermindert werden.

Gesucht:

Abdrehdurchmesser D_r und die Bestförderhöhe H_r nach dem Abdrehen ($H_r = 57,5$ m)

Berechnung:

Aus Formel (29): $D_r \approx D_t \cdot \sqrt{\frac{Q_r}{Q_t}}$ zur Bestimmung des (gemittelten) Abdrehdurchmessers ergibt sich durch Einsetzen der Daten: $D_r = 219 \cdot \sqrt{\frac{135}{200}} = 180 \text{ mm}$

Aus Formel (28): $H_r \approx H_t \cdot \frac{Q_r}{Q_t}$ folgt dann $H_r = 57,5 \cdot 135/200 = 38,8 \text{ m}$

Rechenbeispiel 11: NPSH_{vorb} bei Saugbetrieb

Gegeben:

Die Kreiselpumpenanlage nach Rechenbeispiel 4 wird durch folgende Daten ergänzt:

- Aufstellungsort 500 m über N.N.;
- $H_{v,s} = 0.39$ m (aus den Rechenbeispielen 5 und 6); $H_{s,peo} = 3,00$ m; $v_e \approx 0$.
- Die Pumpe nach Rechenbeispiel 1 ist horizontal aufgestellt wie in Abb. 51 mit offenem Saugbehälter.
- Nach Abb. 32 hat die Pumpe bei Q = 200 m³/h ein NPSH_{erf} = 5,50 m.

Gefragt:

Reicht das NPSH_{erf} aus?

Berechnung:

In Formel (31):

 $NPSH_{vorh} = (p_e + p_b - p_D)/(\rho \cdot g) + v_e^2/2g - H_{v,s} - H_{s,geo} \pm s'$ werden folgende Werte eingesetzt:

- Behälterüberdruck p_e = 0,
- Atmosphärendruck p_b = 955 mbar = 95 500 Pa nach Tabelle 13,
- Verdampfungsdruck p_D = 0,02337 bar = 2337 Pa nach Tabelle 14,
- Dichte ρ = 998,2 kg/m³ nach Tabelle 14
- $v_e = 0 = v_e^2/2g$
- s' = 0, da Mitte Laufradeintritt und Mitte Saugstutzen auf gleicher Höhe liegen

NPSH_{vorh} = $(0 + 95500 - 2337) / (998, 2 \cdot 9, 81) + 0 - 0, 39 - 3,00$ = 6,12 m

Bei einem NPSH_{erf} = 5,50 m ist hier NPSH_{vorh} > NPSH_{erf}, also ausreichend.

Rechenbeispiel 12: NPSH_{vorh} bei Zulaufbetrieb

Gegeben:

Alternativ zu Rechenbeispiel 11 soll die dortige Anlage jetzt im Zulaufbetrieb mit geschlossenem Behälter wie im Abb. 52 betrieben werden. Die Daten der Anlage lauten:

- Aufstellungsort 500 m über N.N.
- $H_{v,s} = 0.39$ m (aus den Rechenbeispielen 5 und 6); $H_{z,geo} = 2,00$ m; $v_e \approx 0$.
- Die Pumpe nach Rechenbeispiel 1 ist horizontal aufgestellt wie in Abb. 52 mit geschlossenem Saugbehälter
- $p_e = -0,40$ bar (Unterdruck).
- Nach Abb. 32 hat die Pumpe bei Q = 200 m³/h ein NPSH_{erf} = 5,50 m

Gefragt:

Reicht das NPSH_{erf} aus?

Berechnung:

In Formel (33):

 $NPSH_{vorh} = (p_e + p_b - p_D)/(\rho \cdot g) + v_e^2/2g - H_{v,s} + H_{z,geo} \pm s'$ werden folgende Werte eingesetzt:

- Behälterüberdruck p_e = -0,40 bar = -40000 Pa,
- Atmosphärendruck p_b = 955 mbar = 95500 Pa nach Tabelle 13,
- Verdampfungsdruck p_D = 0,02337 bar = 2337 Pa nach Tabelle 14,
- Dichte ρ = 998,2 kg/m³ nach Tabelle 14
- s' = 0, da Mitte Laufradeintritt und Mitte Saugstutzen auf gleicher Höhe liegen

NPSH_{vorh} = (-40000+95500-2337) / (998,2.9,81) - 0,39 + 2,00= 7,04 m

Bei einem NPSH_{erf} = 5,50 m ist hier NPSH_{vorh} > NPSH_{erf}, also ausreichend.

Rechenbeispiel 13: Pumpenkennlinien bei zähen Flüssigkeiten

Gegeben:

Mit der Kreiselpumpe nach Rechenbeispiel 1 und den Kennlinien nach Abb. 34 soll ein Mineralöl mit der Dichte $\rho_z = 0,897 \text{ kg/m}^3$ und der kinematischen Viskosität von $v_z = 500 \cdot 10^{-6} \text{ m}^2/\text{s}$ gefördert werden.

Gesucht:

die Kennlinien für Förderhöhe, Wirkungsgrad und Leistungsbedarf bei Betrieb mit dieser zähen Flüssigkeit unter Benutzung des Rechenblattes nach Abb. 69.

Berechnung:

Für das Aufsuchen der Umrechnungsfaktoren werden zunächst die folgenden Daten der Wasserförderung (Index w) benötigt:

- Bestförderstrom $Q_{w, opt} = 200 \text{ m}^3/\text{h}$
- Bestförderhöhe $H_{w, opt} = 57,5 \text{ m}$
- Bestwirkungsgrad η_{w. opt} = 0,835
- Antriebsleistung $P_{w, opt} = 37,5 \text{ kW}$
- Drehzahl n = 2900 min⁻¹
- spezifische Drehzahl (aus Rechenbeispiel 3) n_a = 32,8
- kinematische Viskosität $v_r = 500 \cdot 10^{-6} \text{ m}^2/\text{s}$
- Dichte des Mineralöles $\rho_z = 897 \text{ kg/m}^3$

Aus Abb. 69 ergeben sich danach die drei Umrechnungsfaktoren $f_0 = 0,84, f_H = 0,88, f_n = 0,62$

Die weitere Berechnung erfolgt tabellarisch:

Q/Q _{opt}	0	0,8	1,0	1,2
Q _w [m ₃ /h]*	0	160	200	240
Hw [m]*	66,5	62,0	57,5	51,0
η _w *	0	0,81	0,835	0,805
$Q_z = Q_w \cdot f_Q$ [m ³ /h]	0	134,4	168	201,6
H _z [m]	= H _w 66,5	$= 1,03 \cdot H_{_{\rm W}} \cdot f_{_{\rm H}}$ 56,2	= H _w · f _H 50,6	= H _w · f _H 44,9
$\eta_{z}=\eta_{w}\cdot f_{\eta}$	0	0,502	0,518	0,499
$P_{z} = \frac{\rho_{z} \cdot H_{z} \cdot Q_{z}}{\eta_{z} \cdot 367}$ [kW]	0	36,8	40,1	44,3

Die somit berechneten Kennlinienpunkte werden mit den Kennlinien aus Abb. 32 (für 219 mm Laufraddurchmesser bei Wasserförderung geltend) in Abb. 70 verglichen.

Rechenbeispiel14: Förderhöhenminderung bei Hydrotransport

Gegeben:

Feinkies mit einer Dichte von $\rho_s = 2700 \text{ kg/m}^3$ und einem mittleren Korndurchmesser von d_s = 5 mm soll bei einer Konzentration von c_T = 15 % in kaltem Wasser (kinematische Viskosität $v_f = 1,00 \cdot 10^{-6} \text{ m}^2/\text{s}$) mit einer Kreiselpumpe (hydraulische Daten nach Rechenbeispiel 1, spezifische Drehzahl n_q = 33, Druckziffer $\psi = 1,0$) gefördert werden.

Gesucht:

Die Förderhöhenminderung Δ H/H bei H = 57,5 m

Berechnung:

Nach Bild 55 ist die Sinkgeschwindigkeit $w_{s,0}$ einer einzelnen Kugel bei den oben genannten Bedingungen 0,5 m/s. Die REYNOLDSZahl ist dann Re_s = $w_{s,0} \cdot d_s / v_f = 0,5 \cdot 0,005 / 1,0 \cdot 10^{-6} = 2500$

Die Förderhöhenminderung wird nach Formel (47) berechnet: $\Delta H/H = c_T / \psi \cdot \sqrt[3]{Re_s} \cdot (11,83/n_q)^3 \cdot (\rho_s/\rho_f - 1)$ $= (0,15 / 1,0) \cdot \sqrt[3]{2500} \cdot (11,83 / 33)3 \cdot (2700 / 1000 - 1)$ $= 0,15 \cdot 13,6 \cdot 0,0461 \cdot 1,70 = 0,16$

 Δ H = 0,16 · 57,5 = 9,2 m

Die Förderhöhe der Pumpe mit $H_{w, opt} = 57,7$ m würde unter obigen Bedingungen also um 16 % vermindert werden auf 57,5 - 9,2 = 48,3 m.

Rechenbeispiel 15: Mittlere Dichte ρ_m

Gegeben:

Hydrotransport entsprechend Rechenbeispiel 14

Gesucht:

Wie groß ist die mittlere Dichte ρ_m und wie wirkt sie sich auf den Förderdruck der Pumpe aus, steigt er an oder fällt er ab?

Berechnung:

Nach Formel (49) $\rho_m = c_T \cdot \rho s + (1 - c_T) \cdot \rho f$ ist die mittlere Dichte mit

$$\begin{split} \rho_{\rm f} &= \rho_{\rm w} = 998,2 \text{ kg/m}^3 \text{ für Wasser bei 20 °C.} \\ \rho_{\rm m} &= 0,15 \cdot 2700 + 0,85 \cdot 998,2 = 1253 \text{ kg/m}^3 \end{split}$$

Der Förderdruck ist nach Formel (48) $\Delta p = \rho_m \cdot g \cdot (H - \Delta H)$ = 1253 · 9,81 · (57,5 - 9,2) = 593700 Pa = 5,94 bar

Das ist mehr als der Förderdruck bei Wasserbetrieb nach Rechenbeispiel 1 mit $\Delta p = 5,25$ bar. Die Kennlinie $\Delta p = f(Q)$ ist durch den hydraulischen Feststofftransport also um 13 % angestiegen.

Rechenbeispiel 16: Pumpensumpf

Gegeben:

Pumpensumpf für eine Pumpe nach Rechenbeispiel 1 mit den Daten

- Zuflussstrom $Q_{zu} = 120 \text{ m}^3/\text{h}$
- Einschaltförderstrom $Q_e = 220 \text{ m}^3/\text{h}$
- Ausschaltförderstrom Q_a = 150 m³/h

Die maximal zugelassene Schaltzahl des Aggregates wird nach Tabelle 11 gewählt zu Z = 10/h.

Gesucht:

Das Nutzvolumen V_N des Pumpensumpfes

Berechnung:

Nach Formel (50) (alle Förderströme in m³/h) ist das Nutzvolumen V_N des Pumpensumpfes: $V_N = Q_{zu} \cdot (Q_m - Q_{zu}) / Q_m \cdot Z$

 $Q_{\rm m} = (Q_{\rm e} + Q_{\rm a}) / 2 = (220 + 150) / 2 = 185 \text{ m}^3/\text{h}$ Damit folgt: $V_{\rm N} = 120 \cdot (185 - 120) / 185 \cdot 10 = 4,22 \text{ m}_3/\text{h}$

Rechenbeispiel 17: Mindestüberdeckung

Gegeben:

die vertikale, stumpf endende Saugleitung nach Rechenbeispiel 5 und nach Abb. 23 mit dem Rohrinnendurchmesser $d = d_E = 210,1 \text{ mm} = 0,2101 \text{ m}$ bei einem Förderstrom $Q = 200 \text{ m}^3/\text{h} = 0,0556 \text{ m}^3/\text{s}.$

Gesucht:

Die Mindesteintauchtiefe (= Mindestüberdeckung) S_{min} in den offenen Saugbehältern.

Berechnung:

Die Strömungsgeschwindigkeit v_s im Saugrohreintritt beträgt nach Formel (52): v_s = Q / A = Q / (900 $\cdot \pi \cdot d_E^{-2}$) v_s = 200 / (900 $\cdot \pi \cdot 0,2101^2$) = **1,60 m/s**

 $S_{\min} = d_E + 2.3 \cdot v_s \cdot \sqrt{d_E / g}$ = 0.2101 + 2.3 \cdot 1.60 \cdot \sqrt{0.2101 / 9.81} = 0.75 m

Aus Abb. 85 erhält man das gleiche Ergebnis schneller. Abb. 84 liefert den erforderlichen Wandabstand mit >0,21 m, die Kanalbreite mit >1,26 m und den Bodenabstand mit 0,150 m.

Rechenbeispiel 18: Volumen des Saugbehälters

Gegeben:

Eine Kreiselpumpenanlage mit den Daten nach den Rechenbeispielen 1 und 5 und mit der Anordnung eines Saugbehälters nach Abb. 91.

Die luftgefüllte Saugleitung

- der Nennweite DN 200 (Innendurchmesser d_s = 210,1 mm nach Tabelle 5)
- hat eine gestreckte Länge von L_s = 3,00 m
- bei einer geodätischen Saughöhe von H_{s. eco} = 2,60 m.
- Luftdruck p_b = 989 mbar = 98 900 Pa;
- Dichte des Wassers bei 20 °C ρ = 998,2 kg/m³
- Verdampfungsdruck p_D = 2337 Pa.

Gesucht:

Das Volumen V_B des Saugbehälters

Berechnung:

Nach Formel (54) ist das Volumen des Saugbehälters $V_{B} = d_{s}^{2} \cdot \pi/4 \cdot L_{s} \cdot p_{b} / (p_{b} - \rho \cdot g \cdot H_{s})$ und die Saughöhe Hs nach Formel (55): $H_{s} = H_{s,eeo} + H_{y,s}$

Hv, s sind wie nachstehend aus den Druckhöhenverlusten der Rohrleitung und der Armaturen und Formstücke analog Rechenbeispiel 5 zu ermitteln.

• Druckhöhenverluste $H_{v,s}^{-1}$ der Rohrleitung $H_{v,s}^{-1} = \lambda \cdot L / d_s \cdot v_s^2 / 2g$ = 0,016 · 2,60 / 0,2101 · 1,60² / 2 · 9,81 = 0,026 m

Eingesetzt wurden $\lambda = 0,016$ aus Rechenbeispiel 5, L = H_{s, geo} = 2,6 m (nicht 3,0 m, denn die Länge des Krümmers wird unter H_{v, s}2 mit erfasst), d_s = 0,2101 m, v_s = 1,60 m aus Rechenbeispiel 5.

 Druckhöhenverluste H_{v,s}2 der Armaturen und Formstücke H_{v,s}2 besteht aus den Anteilen 180°-Krümmer (2 x 90°-Krümmer) und Einlaufdüse.

Verlustbeiwert ξ des 180°-Krümmers (Faktor 1,4) = 1,4 · 0,10 = 0,14.

Verlustbeiwert ξ der Einlaufdüse (gebrochene Einlaufkante) = 0,20.

$$H_{v,s}^{2} = \sum \xi \cdot v_{s}^{2} / 2g$$

= (0,14 + 0,20) \cdot 1,60² / 2 \cdot 9,81
= 0,044 m

• Es ergibt sich: $H_{v,s} = H_{v,s}1 + H_{v,s}2 = 0,026 + 0,044 = 0,070 m$ und damit $H_s = H_{s,eeo} + H_{v,s} = 2,60 + 0,07 = 2,67 m$ Das Beispiel zeigt, dass die Druckhöhenverluste $H_{v,s}$ (= 0,070 m) bei kurzen Saugleitungen gegenüber der deutlich größeren geodätischen Saughöhe $H_{s,geo}$ (= 2,60 m) vernachlässigt werden können, wodurch die Berechnung wesentlich einfacher wird.

Jetzt kann das Volumen des Saugbehälters V_B nach Formel (54) berechnet werden:

$$V_{B} = d_{s}^{2} \cdot \pi/4 \cdot L_{s} \cdot p_{b} / (p_{b} - \rho \cdot g \cdot H_{s})$$

= 0,2101² \cdot \pi/4 \cdot 3,0 \cdot 98900 \ (98900 - 998,2 \cdot 9,81 \cdot 2,67)
= 0,141 m³

Wenn die Druckhöhenverlust Hv, s vernachlässigt werden, kann V_{B} auch aus Abb. 92 ermittelt werden.

Gewählt wird ein Behälter mit dem 2,8-fachen Volumen von 0,40 m³ (vergleiche Beispiel in Abb. 92).

Zur Kontrolle:

Der niedrigste Druck ist = $p_b - \rho \cdot g \cdot H_s = 72\ 828\ Pa$. Der Verdampfungsdruck ist 0,02337 bar = 233 7 Pa und wird beim Entlüften nicht unterschritten.

Weiterführende Literatur

- [1] Produktspezifische Dokumentation (KSB-Verkaufsunterlagen)
- [2] KSB-Kreiselpumpenlexikon
- [3] Kavitation in Kreiselpumpen. KSB Druckschrift Nr. 0383.051
- [4] Gebäudetechnik von KSB. Pumpenregelung und Anlagenautomation.

Planungshinweise. KSB Druckschrift Nr. 2300.024 (2005)

- [5] Bernauer J., M. Stark, W. Wittekind: Weiterentwicklung von Propellerschaufeln für die Förderung von Flüssigkeiten mit faserigen Feststoffen.
 KSB Technische Berichte 21 (1986), S. 16 – 21
- [6] Bieniek K., N. Gröning: Die Regelung der Förderleistung von Kreiselpumpen mittels elektronischer Drehzahlverstellung. KSB Technische Berichte 22 (1987), S. 16 – 31
- Bieniek K.: Tauchmotoren und Nassläufermotoren zum elektrischen Antrieb von Kreiselpumpen im Fördermedium. KSB Technische Berichte 23 (1987), S. 9 – 17
- [8] Holzenberger K., L. Rau: Kennzahlen zur Auswahl energiefreundlicher Regelungsverfahren bei Kreiselpumpen.
 KSB Technische Berichte 24 (1988), S. 3–19
- [9] Holzenberger K.: Vergleich von zwei Umrechnungsverfahren für die Kennlinien von Kreiselpumpen bei der Förderung zäher Flüssigkeiten.

KSB Technische Berichte 25 (1988), S. 45 - 49

- [10] Holzenberger K.: Ermittlung des Drehmomentverlaufes beim Anfahren von Kreiselpumpen mit Hilfe von Kennzahlen. KSB Technische Berichte 26 (1990), s. 3–13
- [11] Kosmowski I., P. Hergt: Förderung gasbeladener Medien mit Hilfe von Normal- und Sonderausführungen von Kreiselpumpen. KSB Technische Berichte 26 (1990), S. 14 – 19
- [12] Schreyer H.: Stopfbuchslose Chemiepumpen mit Magnetantrieb. KSB Technische Berichte 24 (1988), S. 52–56
- [13] VdS Schadenverhütung: VdS-Form 2092-S.
- [14] EUROPUMP-Broschüre "Zulässige Flanschenkräfte und -momente für Kreiselpumpen" 1986; API 610; ISO 5199

Gesetzliche Einheiten, Auszug für Kreiselpumpen

		Gesetzliche Einheiten					
Physikalische Größe	Formel- zeichen	SI-	Einheiten	weitere gesetzliche Einheiten (nicht vollständig)	nicht mehr zuge- lassene Einheiten	empfohlene Einheiten	Bemerkungen
Länge	I	m	Meter	km, dm, cm, mm, μm		m	Basiseinheit
Volumen	v	m³		dm ³ , cm ³ , mm ³ , Liter (1l = 1 dm ³)	cbm, cdm	m³	
Förderstrom, Volumenstrom	Q V	m³/s		m³/h, l/s		l/s, m³/s	
Zeit	t	s	Sekunde	s, ms, μs, ns, min, h, d		S	Basiseinheit
Drehzahl	n	1/s		1/min		1/min, min ⁻¹	
Masse	m	kg	Kilogramm	g, mg, μg, Tonne (1 t = 1000 kg)	Pfund, Zentner	kg	Basiseinheit Die Masse einer Handelsware wird als Gewicht bezeichnet.
Dichte	ρ	kg/m³		kg/dm³		kg/m³ kg/dm³	Die Bezeichnung "Spezifisches Gewicht" soll nicht mehr ver- wendet werden, da zweideutig (s. DIN 1305).
Massenträgheits- moment	J	kg m²				kg m²	Massenmoment 2. Grades
Massestrom	ṁ	kg/s		t/s, t/h, kg/h		kg/s und t/s	
Kraft	F	N	Newton (= kg m/s²)	kN, mN, μN	kp, Mp	N	1 kp = 9,81 N. Die Gewichts- kraft ist das Produkt aus der Masse m und der örtlichen Fallbeschleunigung g.
Druck	р	Pa	Pascal (= N/m²)	bar (1 bar = 10 ⁵ Pa)	kp/cm², at, mWS, Torr	bar	1 at = 0,981 bar = 9,81 · 104 Pa 1 mm Hg = 1,333 mbar 1 mm WS = 0,098 mbar
Mechanische Spannung (Festigkeit)	σ, τ	Ра	Pascal (= N/m ²)	N/mm², N/cm²	kp/cm ²	N/mm²	1 kp/mm ² = 9,81 N/mm ²
Biegemoment, Drehmoment	M, T	Nm			kpm	Nm	1 kpm = 9,81 Nm
Energie, Arbeit, Wärmemenge	W, Q	J	Joule (= Nm =Ws)	kJ, Ws, kWh (1 kWh = 3.600 kJ)	kpm, Kcal, cal, WE	J und kJ	1 kpm = 9,81 J 1 kcal = 4,1868 kJ
Förderhöhe	Н	m	Meter		m Fl. S.	m	Die Förderhöhe ist die der Masseneinheit des Förder- mediums zugeführte Arbeit in J = Nm, bezogen auf die Gewichtskraft dieser Masseneinheit in N.
Leistung	Ρ	w	Watt (= J/s =Nm/s)	MW, kW	kpm/s, PS	kW	1 kp m/s = 9,81 W 1 PS = 736 W
Temperatur, -differenz	т	к	Kelvin	°C	°K, grd	к	Basiseinheit
Kinematische Viskosität	ν	m²/s			St (Stokes), °E	m²/s	1 St = 10 ⁻⁴ m ² /s 1 cSt = 1 mm ² /s
Dynamische Viskosität	η	Pa s	Pascal- sekunde (=Ns/m²)		P (Poise)	Pa s	1 P = 0,1 Pa s
Spezifische Drehzahl	n _q	1				1	$n_q = 333 \cdot n \cdot \sqrt{Q_{op}} \sqrt{g \cdot H_{op}}^*$ in SI-Einheiten (m und s)

QUALITÄT ST DA

Hotline

Deutschlandweit zu Ihrem Vertriebshaus aus dem Festnetz 0,14 € /Minute (Mobilfunktarif kann höher ausfallen)

+49 1805 5724-80 Tel. Fax +49 1805 5724-89 KSB-24-h-Service-Hotline Tel. +49 6233 86-0 +49 6233 86-3401 Fax

Der KSB-Newsletter melden Sie sich an: www.ksb.de/newsletter

Vertriebshaus Berlin

vertrieb-berlin@ksb.com

Technische Gebäudeausrüstung Tel. +49 30 43578-5060

Fax +49 30 43578-5058 Industrie-, Energie-, Wasser- / Abwassertechnik Tel. +49 30 43578-5010

+49 30 43578-5055 Fax

Vertriebshaus Halle

vertrieb-halle@ksb.com

Technische Gebäudeausrüstung

Tel. +49 345 4826-5340 +49 345 4826-5356 Fax +49 345 4826-5358 Industrie-, Energie-,

Wasser- / Abwassertechnik +49 345 4826-5310 Tel

Fax

Vertriebshaus Hamburg

vertrieb-hamburg@ksb.com

Technische Gebäudeausrüstung Tel +49 40 69447-0 Fax +49 40 69447-256

Industrie-, Energie-, Wasser- / Abwassertechnik Tel. +49 40 69447-226

Fax +49 40 69447-255

Vertriebshaus Hannover

vertrieb-hannover@ksb.com

Technische Gebäudeausrüstung Tel. +49 40 69447-0

+49 40 69447-256 Fax Industrie-, Energie-,

Wasser- / Abwassertechnik Tel. +49 511 33805-0 +49 511 33805-55 Fax

Vertriebshaus Mainz

vertrieb-mainz@ksb.com

Technische Gebäudeausrüstung

Tel. +49 6131 25051-41 +49 6131 25051-58 Fax Industrie-, Energie-, Wasser- / Abwassertechnik +49 6131 25051-0 Tel +49 6131 25051-55

Vertriebshaus München

vertrieb-muenchen@ksb.com

Tel. +49 911 58608-80

Industrie-, Energie-, Wasser- / Abwassertechnik +49 89 72010-200 Tel Fax

Vertriebshaus Nürnberg

vertrieb-nuernberg@ksb.com

Technische Gebäudeausrüstung Tel. +49 911 58608-80

Fax +49 911 58608-56

Industrie-, Energie-, Wasser- / Abwassertechnik Tel. +49 911 58608-70 +49 911 58608-57 Fax

Vertriebshaus Region West

vertrieb-west@ksb.com

Technische Gebäudeausrüstung

Tel. +49 214 20694-10 +49 214 20694-57 Fax

Industrie-, Energie-, Wasser- / Abwassertechnik

Tel. +49 214 20694-10 +49 214 20694-55 Fax

Vertriebshaus Stuttgart

vertrieb-stuttgart@ksb.com

Tel. +49 7152 90699-46 Fax Industrie-, Energie-, Wasser- / Abwassertechnik

Tel +49 7152 33061-70 Fax +49 7152 90699-45

Österreich

KSB Österreich GmbH

info@ksh at

Tel. +43 5 91030-0 Ersatzteile

Tel. +43 5 91030-263 +43 5 91030-200 Fax

Service-Center

Tel. +43 5 91030-255 +43 5 91030-200 Fax

Schweiz

KSB (Schweiz) AG

sales-ch@ksb.com Tel. +41 43 2109-933 Fax +41 43 2109-966

KSB SE & Co. KGaA Johann-Klein-Straße 9 67227 Frankenthal (Deutschland) www.ksb.com

Fax +49 345 4826-5355 Technische

Gebäudeausrüstung

+49 911 58608-56 Fax

+49 89 72010-275

Technische

Gebäudeausrüstung

+49 7152 33061-10